Rationale & Objective: Acute kidney injury (AKI) is a heterogeneous clinical syndrome with varying causes, pathophysiology, and outcomes. We incorporated plasma and urine biomarker measurements to identify AKI subgroups (subphenotypes) more tightly linked to underlying pathophysiology and long-term clinical outcomes.
Study Design: Multicenter cohort study.
Setting & Participants: 769 hospitalized adults with AKI matched with 769 without AKI, enrolled from December 2009 to February 2015 in the ASSESS-AKI Study.
Predictors: 29 clinical, plasma, and urinary biomarker parameters used to identify AKI subphenotypes.
Outcome: Composite of major adverse kidney events (MAKE) with a median follow-up period of 4.7 years.
Analytical Approach: Latent class analysis (LCA) and k-means clustering were applied to 29 clinical, plasma, and urinary biomarker parameters. Associations between AKI subphenotypes and MAKE were analyzed using Kaplan-Meier curves and Cox proportional hazard models.
Results: Among 769 AKI patients both LCA and k-means identified 2 distinct AKI subphenotypes (classes 1 and 2). The long-term risk for MAKE was higher with class 2 (adjusted HR, 1.41 [95% CI, 1.08-1.84]; P=0.01) compared with class 1, adjusting for demographics, hospital level factors, and KDIGO stage of AKI. The higher risk of MAKE among class 2 was explained by a higher risk of long-term chronic kidney disease progression and dialysis. The top variables that were different between classes 1 and 2 included plasma and urinary biomarkers of inflammation and epithelial cell injury; serum creatinine ranked 20th out of the 29 variables for differentiating classes.
Limitations: A replication cohort with simultaneously collected blood and urine sampling in hospitalized adults with AKI and long-term outcomes was unavailable.
Conclusions: We identify 2 molecularly distinct AKI subphenotypes with differing risk of long-term outcomes, independent of the current criteria to risk stratify AKI. Future identification of AKI subphenotypes may facilitate linking therapies to underlying pathophysiology to prevent long-term sequalae after AKI.
Plain-language Summary: Acute kidney injury (AKI) occurs commonly in hospitalized patients and is associated with high morbidity and mortality. The AKI definition lumps many different types of AKI together, but subgroups of AKI may be more tightly linked to the underlying biology and clinical outcomes. We used 29 different clinical, blood, and urinary biomarkers and applied 2 different statistical algorithms to identify AKI subtypes and their association with long-term outcomes. Both clustering algorithms identified 2 AKI subtypes with different risk of chronic kidney disease, independent of the serum creatinine concentrations (the current gold standard to determine severity of AKI). Identification of AKI subtypes may facilitate linking therapies to underlying biology to prevent long-term consequences after AKI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523857 | PMC |
http://dx.doi.org/10.1053/j.ajkd.2023.01.449 | DOI Listing |
PLoS Negl Trop Dis
January 2025
Department of Infectious Diseases, Children's Hospital 2, Ho Chi Minh City, Vietnam.
Background: Severe respiratory distress and acute kidney injury (AKI) are key factors leading to poor outcomes in patients with dengue shock syndrome (DSS). There is still limited data on how much resuscitated fluid and the specific ratios of intravenous fluid types contribute to the development of severe respiratory distress necessitating mechanical ventilation (MV) and AKI in children with DSS.
Methodology/principal Findings: This retrospective study was conducted at a tertiary pediatric hospital in Vietnam between 2013 and 2022.
J Bras Nefrol
January 2025
Santa Casa de Porto Alegre, Porto Alegre, RS, Brazil.
Introduction: Acute kidney injury (AKI) in the setting of COVID-19 is associated with worse clinical and renal outcomes, with limited long-term data.
Aim: To evaluate critically ill COVID-19 patients with AKI that required nephrologist consultation (NC-AKI) in a tertiary hospital.
Methods: Prospective single-center cohort of critically ill COVID-19 adult patients with NC-AKI from May 1st, 2020, to April 30th, 2021.
PLoS One
January 2025
Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
Objectives: Acute kidney injury (AKI) is a syndrome with high mortality and morbidity in part due to delayed recognition based on changes in creatinine. A marker for AKI based on a single measurement is needed and therefore the performance of a single measurement of plasma neutrophil gelatinase-associated lipocalin (pNGAL) to predict AKI in patients admitted to the emergency department was tested.
Methods: Samples from the Triage study which included 6005 consecutive adult patients admitted to the emergency department were tested for pNGAL.
Clin Transplant
January 2025
Division of Transplant Surgery, Department of Surgery, University of Washington, Seattle, Washington, USA.
Background: The use of donor kidneys with acute kidney injury (AKI) aims to expand the organ pool, but uncertainty remains regarding their outcomes across different Kidney Donor Profile Index (KDPI) groups and preservation methods.
Methods: We retrospectively analyzed 108 160 deceased donor kidney transplants from the OPTN database, focusing on adult recipients of kidneys from donors with or without AKI between December 2014 and December 2022. Propensity matching was used for each KDPI group (1-20, 21-59, 60-84, and 85-100), comparing donors with AKIN stages 0-1 to AKIN stages 2-3.
Cureus
December 2024
Critical Care Medicine, Star Care Multispeciality Hospital, Kozhikode, IND.
Background: Fluid management is a crucial critical care component, influencing outcomes such as organ function, renal integrity, and survival in critically ill patients. Recent evidence suggests that balanced crystalloids may offer advantages over isotonic saline, particularly in reducing the risk of acute kidney injury (AKI) and other complications. This study aimed to evaluate the impact of balanced crystalloids versus isotonic saline on clinical outcomes in the intensive care unit (ICU), focusing on AKI, renal replacement therapy (RRT), and mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!