Scientific evaluation of ecological environmental quality is the premise of realizing regional ecological sustainable development. Taking Landsat series satellite images from 1990 to 2020 as the data source, on the basis of the entropy remote sensing ecological index (E-RSEI), combining the Mann-Kendall significance test, Theil-Sen Median analysis, Hurst exponent, and stability analysis, the spatial-temporal variation characteristics of ecological environmental quality in typical ecological areas of the Yellow River Basin were analyzed in the context of multi-spatiotemporal scales. In addition, the effects of eight environmental and human factors on the change in E-RSEI were quantified using a geodetector. The results showed that:① in the past 31 years, the average value of E-RSEI was 67.5%, which showed an increasing trend on the time scale, with an average increase of 0.066·(10 a). On the spatial scale, E-RSEI was higher in the west and the south lower in the east and the north. ② The ecological environmental quality will continue to improve in the future, but 9.33% of the areas have potential risks of degradation. ③ Precipitation was the dominant environmental factor that affected the spatial distribution of E-RSEI in this area, and the influence of human factors was low. Compared with that of single factors, the interaction of factors had a stronger impact on ecological environmental quality, and the interaction between precipitation and other factors played a leading role. The results of this study can provide a scientific reference for the sustainable development of ecological environmental quality in the ecological zone of the Yellow River Basin.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202206029DOI Listing

Publication Analysis

Top Keywords

ecological environmental
24
environmental quality
24
yellow river
12
river basin
12
ecological
11
environmental
8
quality typical
8
typical ecological
8
ecological areas
8
areas yellow
8

Similar Publications

Leaf Dry Matter Content Is Phylogenetically Conserved and Related to Environmental Conditions, Especially Wildfire Activity.

Ecol Lett

January 2025

National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China.

Leaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC.

View Article and Find Full Text PDF

Historical redlining and clustering of present-day breast cancer factors.

Cancer Causes Control

January 2025

Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, 265 Farber Hall, Buffalo, NY, 14214, USA.

Purpose: Historical redlining, a 1930s-era form of residential segregation and proxy of structural racism, has been associated with breast cancer risk, stage, and survival, but research is lacking on how known present-day breast cancer risk factors are related to historical redlining. We aimed to describe the clustering of present-day neighborhood-level breast cancer risk factors with historical redlining and evaluate geographic patterning across the US.

Methods: This ecologic study included US neighborhoods (census tracts) with Home Owners' Loan Corporation (HOLC) grades, defined as having a score in the Historic Redlining Score dataset; 2019 Population Level Analysis and Community EStimates (PLACES) data; and 2014-2016 Environmental Justice Index (EJI) data.

View Article and Find Full Text PDF

The scientific establishment of the Ecological Security Pattern (ESP) is crucial for fostering the synergistic development of ecological and recreational functions, thereby enhancing urban ecological protection, recreational development, and sustainable growth. This study aimed to propose a novel method of constructing ESP considering both ecological and recreational functions, and to reconstruct ESP by weighing the relationship between ecological protection and recreational development. Utilizing Fuzhou City as a case study, a comprehensive application of methodologies including Morphological Spatial Pattern Analysis (MSPA), landscape connectivity analysis, ArcGIS spatial analysis, social network analysis (SNA), and circuit theory is employed to develop both the ESP and the Recreational Spatial Pattern (RSP).

View Article and Find Full Text PDF

Integrating social learning, social networks, and non-parental transgenerational plasticity.

Trends Ecol Evol

January 2025

Department of Environmental Science and Policy, University of California, One Shields Ave, Davis, CA 95616, USA.

Transgenerational plasticity (TGP) has largely focused on how parental exposure to ecological conditions shapes the phenotypes of future generations. However, organisms acquire information about their ecological environment via social learning, which can also shape TGP in profound ways. We demonstrate that non-parents alter how parents detect and respond to environmental cues in ways that spillover to affect offspring, non-parents influence offspring even without direct physical interactions, and parental cues received by offspring can alter the phenotypes of other juveniles.

View Article and Find Full Text PDF

Legacy and emerging organophosphate flame retardants (OPFRs) in water and sediment from the Pearl River Delta to the adjacent coastal waters of the South China Sea: Spatioseasonal variations, flux estimation and ecological risk.

Environ Pollut

January 2025

Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:

The industrialization and urbanization along the Pearl River Delta (PRD) have exacerbated the issue of pollution in aquatic environments by organophosphate flame retardants (OPFRs). Historical cumulative pollution from legacy OPFRs, combined with newly emerging OPFRs, has increased the severity and complexity of OPFR pollution in this region. We explored the contamination profile, input flux and risk of legacy and emerging OPFRs in surface waters and in sediment samples of the PRD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!