Water scarcity is becoming an issue of more significant concern with a major impact on global sustainability. For it, new measures and approaches are urgently needed. Digital technologies and tools can play an essential role in improving the effectiveness and efficiency of current water management approaches. Therefore, a solution is proposed and validated, given the limited presence of models or technological architectures in the literature to support intelligent water management systems for domestic use. It is based on a layered architecture, fully designed to meet the needs of households and to do so through the adoption of technologies such as the Internet of Things and cloud computing. By developing a prototype and using it as a use case for testing purposes, we have concluded the positive impact of using such a solution. Considering this is a first contribution to overcome the problem, some issues will be addressed in a future work, namely, data and device security and energy and traffic optimisation issues, among several others.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181645 | PMC |
http://dx.doi.org/10.3390/s23094493 | DOI Listing |
ACS ES T Water
January 2025
Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom.
Wet chemical sensors autonomously sample and analyze water using chemical assays. Their internal fluidics are not susceptible to biofouling (the undesirable accumulation of microorganisms, algae, and animals in natural waters) due to the harsh chemical environment and dark conditions; however, the sample intake and filter are potentially susceptible. This paper describes the use of copper intake filters, incorporated to prevent fouling, on two different wet chemical nitrate sensors that each use different variants of the Griess assay (in particular, different nitrate reduction steps) to quantify nitrate concentrations.
View Article and Find Full Text PDFAquac Nutr
January 2025
School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama 36849, USA.
Biofloc technology is an aquaculture production system that has gained popularity with tilapia production. Probiotics provide benefits for the host and/or aquatic environments by both regulating and modulating microbial communities and their metabolites. When a probiotic feed is combined with a biofloc system, the production amount may be improved through better fish growth, disease resistance, and/or improved water quality by reducing organic matter and stabilizing metrics such as pH and components of the nitrogen cycle.
View Article and Find Full Text PDFFront Antibiot
March 2023
Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States.
Antimicrobial resistance (AMR) can develop in deep-pit swine manure storage when bacteria are selectively pressured by unmetabolized antibiotics. Subsequent manure application on row crops is then a source of AMR into soil and downstream runoff water. Therefore, understanding the patterns of diverse antibiotic resistance genes (ARGs) in manure among different farms is important for both interpreting the results of the detection of these genes from previous studies and for the use of these genes as bioindicators of manure borne antibiotic resistance in the environment.
View Article and Find Full Text PDFQuantifying ecosystem services provided by mobile species like insectivorous bats remains a challenge, particularly in understanding where and how these services vary over space and time. Bats are known to offer valuable ecosystem services, such as mitigating insect pest damage to crops, reducing pesticide use, and reducing nuisance pest populations. However, determining where bats forage is difficult to monitor.
View Article and Find Full Text PDFHeliyon
July 2024
College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, 201306, China.
The fishery resources in the Yangtze River Estuary (YRE) have declined drastically because of overfishing and environmental changes, leading to ecosystem degradation of the YRE, and bringing numerous rare fish species to the brink of extinction. As a new technology with great prospects for popularization and application, environmental DNA (eDNA) technology has been utilized and proven by many studies to have high potential in revealing the various species' biodiversity. In this study, we analyzed the species composition and diversity of the Yangtze River Estuary using a combination of eDNA technology and bottom trawling approaches, and later, the comparison of both methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!