Human Activity Recognition (HAR) is a complex problem in deep learning, and One-Dimensional Convolutional Neural Networks (1D CNNs) have emerged as a popular approach for addressing it. These networks efficiently learn features from data that can be utilized to classify human activities with high performance. However, understanding and explaining the features learned by these networks remains a challenge. This paper presents a novel eXplainable Artificial Intelligence (XAI) method for generating visual explanations of features learned by one-dimensional CNNs in its training process, utilizing t-Distributed Stochastic Neighbor Embedding (t-SNE). By applying this method, we provide insights into the decision-making process through visualizing the information obtained from the model's deepest layer before classification. Our results demonstrate that the learned features from one dataset can be applied to differentiate human activities in other datasets. Our trained networks achieved high performance on two public databases, with 0.98 accuracy on the SHO dataset and 0.93 accuracy on the HAPT dataset. The visualization method proposed in this work offers a powerful means to detect bias issues or explain incorrect predictions. This work introduces a new type of XAI application, enhancing the reliability and practicality of CNN models in real-world scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181687PMC
http://dx.doi.org/10.3390/s23094409DOI Listing

Publication Analysis

Top Keywords

one-dimensional convolutional
8
human activity
8
activity recognition
8
human activities
8
high performance
8
features learned
8
explaining visualizing
4
visualizing embeddings
4
embeddings one-dimensional
4
convolutional models
4

Similar Publications

This study proposes a novel rolling bearing fault diagnosis technique based on a synchrosqueezing wavelet transform (SWT) and a transfer residual convolutional neural network (TRCNN) designed to address the difficulties of feature extraction caused by the non-stationarity of fault signals, as well as the issue of low fault diagnosis accuracy resulting from small sample quantities. This approach transforms the one-dimensional vibration signal into time-frequency diagrams using an SWT based on complex Morlet wavelet basis functions, which redistributes (squeezes) the values of the wavelet coefficients at different localized points in a time-frequency plane to the estimated instantaneous frequencies. This allows the energy to be more fully concentrated in actual corresponding frequency components.

View Article and Find Full Text PDF

Petroleum hydrocarbon pollution causes significant damage to soil, so accurate prediction and early intervention are crucial for sustainable soil management. However, traditional soil analysis methods often rely on statistical methods, which means they always rely on specific assumptions and are sensitive to outliers. Existing machine learning based methods convert features containing spatial information into one-dimensional vectors, resulting in the loss of some spatial features of the data.

View Article and Find Full Text PDF

Metallomic Classification of Pulmonary Nodules Using Blood by Deep-Learning-Boosted Synchrotron Radiation X-ray Fluorescence.

Environ Health (Wash)

January 2025

CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.

Ambient air pollution is an important contributor to increasing cases of lung cancer, which is a malignant cancer with the highest mortality among all cancers. It primarily manifests in the form of pulmonary nodules, but not all will develop into lung cancer. Therefore, it is highly desired to distinguish between benign and malignant pulmonary nodules for the early prevention and treatment of lung cancer.

View Article and Find Full Text PDF

The application of machine learning approaches to classify and predict fertility rate in Ethiopia.

Sci Rep

January 2025

Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

Integrating machine learning (ML) models into healthcare systems is a rapidly evolving field with the potential to revolutionize care delivery. This study aimed to classify fertility rates and identify significant predictors using ML models among reproductive women in Ethiopia. This study utilized eight ML models in 5864 reproductive-age women using Ethiopian Demographic Health Survey (EDHS), 2019 data.

View Article and Find Full Text PDF

Integrating single-cell multimodal epigenomic data using 1D convolutional neural networks.

Bioinformatics

December 2024

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, United States.

Motivation: Recent experimental developments enable single-cell multimodal epigenomic profiling, which measures multiple histone modifications and chromatin accessibility within the same cell. Such parallel measurements provide exciting new opportunities to investigate how epigenomic modalities vary together across cell types and states. A pivotal step in using these types of data is integrating the epigenomic modalities to learn a unified representation of each cell, but existing approaches are not designed to model the unique nature of this data type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!