The Internet of Things (IoT) paradigm is currently highly demanded in multiple scenarios and in particular plays an important role in solving medical-related challenges. RF and microwave technologies, coupled with wireless energy transfer, are interesting candidates because of their inherent contactless spectrometric capabilities and for the wireless transmission of sensing data. This article reviews some recent achievements in the field of wearable sensors, highlighting the benefits that these solutions introduce in operative contexts, such as indoor localization and microwave sensing. Wireless power transfer is an essential requirement to be fulfilled to allow these sensors to be not only wearable but also compact and lightweight while avoiding bulky batteries. Flexible materials and 3D printing polymers, as well as daily garments, are widely exploited within the presented solutions, allowing comfort and wearability without renouncing the robustness and reliability of the built-in wearable sensor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181738 | PMC |
http://dx.doi.org/10.3390/s23094356 | DOI Listing |
ACS Mater Au
January 2025
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
The surge of flexible, biointegrated electronics has inspired continued research efforts in designing and developing chip-less and wireless devices as soft and mechanically compliant interfaces to the living systems. In recent years, innovations in materials, devices, and systems have been reported to address challenges surrounding this topic to empower their reliable operation for monitoring physiological signals. This perspective provides a brief overview of recent works reporting various chip-less electronics for sensing and actuation in diverse application scenarios.
View Article and Find Full Text PDFACS Mater Au
January 2025
Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.
Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve.
View Article and Find Full Text PDFPorous structures offer several key advantages in energy harvesting, making them highly effective for enhancing the performance of piezoelectric and triboelectric nanogenerators (PENG and TENG). Their high surface area-to-volume ratio improves charge accumulation and electrostatic induction, which are critical for efficient energy conversion. Additionally, their lightweight and flexible nature allows for easy integration into wearable and flexible electronics.
View Article and Find Full Text PDFJMIR Cancer
January 2025
Department of Medicine, University of Pittsburgh, Suite 5002, 5051 Centre Avenue, Pittsburgh, PA, 15213, United States, (412) 623-5973.
This study describes patients' interaction with a personalized web-based visualization displaying daily electronic patient-reported outcomes and wearable device data during outpatient chemotherapy.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:
The accurate and reliable quantification of the levels of disease markers in human sweat is of significance for health monitoring through wearable sensing technology, but the sensors performed in real sweat always suffer from biofouling that cause performance degradation or even malfunction. We herein developed a wearable antifouling electrochemical sensor based on a novel multifunctional hydrogel for the detection of targets in sweat. The integration of polyethylene glycol (PEG) into the sulfobetaine methacrylate (SBMA) hydrogel results in a robust network structure characterized by abundant hydrophilic groups on its surface, significantly enhancing the PEG-SBMA hydrogel's antifouling and mechanical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!