Recent advancements in deep learning techniques have accelerated the growth of robotic vision systems. One way this technology can be applied is to use a mobile robot to automatically generate a 3D map and identify objects within it. This paper addresses the important challenge of labeling objects and generating 3D maps in a dynamic environment. It explores a solution to this problem by combining Deep Object Pose Estimation (DOPE) with Real-Time Appearance-Based Mapping (RTAB-Map) through means of loose-coupled parallel fusion. DOPE's abilities are enhanced by leveraging its belief map system to filter uncertain key points, which increases precision to ensure that only the best object labels end up on the map. Additionally, DOPE's pipeline is modified to enable shape-based object recognition using depth maps, allowing it to identify objects in complete darkness. Three experiments are performed to find the ideal training dataset, quantify the increased precision, and evaluate the overall performance of the system. The results show that the proposed solution outperforms existing methods in most intended scenarios, such as in unilluminated scenes. The proposed key point filtering technique has demonstrated an improvement in the average inference speed, achieving a speedup of 2.6× and improving the average distance to the ground truth compared to the original DOPE algorithm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181773 | PMC |
http://dx.doi.org/10.3390/s23094364 | DOI Listing |
Environ Microbiome
January 2025
LMO Team, National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon, Republic of Korea.
Background: The anthosphere, also known as the floral microbiome, is a crucial component of the plant reproductive system. Therefore, understanding the anthospheric microbiome is essential to explore the diversity, interactions, and functions of wildflowers that coexist in natural habitats. We aimed to explore microbial interaction mechanisms and key drivers of microbial community structures using 144 flower samples from 12 different wild plant species inhabiting the same natural environment in South Korea.
View Article and Find Full Text PDFMicrobiome
January 2025
Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.
Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.
Syst Rev
January 2025
Pharmacy Department, Hamad Medical Corporation, Doha, Qatar.
Introduction: Medication errors occur at any point of the medication management process and are a major cause of death and harm globally. The perioperative environment introduces challenges in identifying medication errors due to the frequent use of time-sensitive, high-alert medications in a dynamic and intricate setting. Pharmacists could potentially reduce the occurrence of these errors because of their training and expertise.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia.
Background: Midwifery faces global workforce shortages exacerbated by the pandemic. Understanding job satisfaction drivers is vital for creating supportive work environments. This study explored the multifaceted nature of job satisfaction of midwives in the post-COVID era in order to understand the elements that contribute and the ones that don't to midwives' sense of fulfilment and engagement at work.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.
Significant changes in the proteome highlight essential metabolic adaptations for development and oxidative signaling induced by the treatment of young sugarcane plants with hydrogen peroxide. These adaptations suggest that hydrogen peroxide acts not only as a stressor but primarily as a signaling molecule, triggering specific metabolic pathways that regulate growth and plant resilience. Sugarcane is a crucial crop for sugar and ethanol production, often influenced by environmental signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!