Anomaly detection is essential for realizing modern and secure cyber-physical production systems. By detecting anomalies, there is the possibility to recognize, react early, and in the best case, fix the anomaly to prevent the rise or the carryover of a failure throughout the entire manufacture. While current centralized methods demonstrate good detection abilities, they do not consider the limitations of industrial setups. To address all these constraints, in this study, we introduce an unsupervised, decentralized, and real-time process anomaly detection concept for cyber-physical production systems. We employ several 1D convolutional autoencoders in a sliding window approach to achieve adequate prediction performance and fulfill real-time requirements. To increase the flexibility and meet communication interface and processing constraints in typical cyber-physical production systems, we decentralize the execution of the anomaly detection into each separate cyber-physical system. The installation is fully automated, and no expert knowledge is needed to tackle data-driven limitations. The concept is evaluated in a real industrial cyber-physical production system. The test result confirms that the presented concept can be successfully applied to detect anomalies in all separate processes of each cyber-physical system. Therefore, the concept is promising for decentralized anomaly detection in cyber-physical production systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181007 | PMC |
http://dx.doi.org/10.3390/s23094207 | DOI Listing |
Sensors (Basel)
January 2025
Department of Automation, "Dunarea de Jos" University of Galati, 800008 Galati, Romania.
This paper deals with a "digital twin" (DT) approach for processing, reprocessing, and scrapping (P/R/S) technology running on a modular production system (MPS) assisted by a mobile cyber-physical robotic system (MCPRS). The main hardware architecture consists of four line-shaped workstations (WSs), a wheeled mobile robot (WMR) equipped with a robotic manipulator (RM) and a mobile visual servoing system (MVSS) mounted on the end effector. The system architecture integrates a hierarchical control system where each of the four WSs, in the MPS, is controlled by a Programable Logic Controller (PLC), all connected via Profibus DP to a central PLC.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Economics and Management, Russian University of Cooperation, 420034 Kazan, Russia.
The process of establishing relay protection and automation (RPA) settings for electric power systems (EPSs) entails complex calculations of operating modes. Traditionally, these calculations are based on symmetrical components, which require the building of equivalent circuits of various sequences. This approach can lead to errors both when identifying the operating modes and when modeling the RPA devices.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science and Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
Urban parking management is a growing challenge with increasing vehicle numbers and limited parking space. Traditional methods often fail during peak hours, leading to inefficiencies, unauthorized usage, and revenue losses. For instance, a parking lot designed for 300 vehicles often exceeds 90% occupancy during peak times, creating congestion and billing inaccuracies.
View Article and Find Full Text PDFFood Eng Rev
August 2024
Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2 Canada.
Drying is a crucial unit operation within the functional foods and biopharmaceutical industries, acting as a fundamental preservation technique and a mechanism to maintain these products' bioactive components and nutritional values. The heat-sensitive bioactive components, which carry critical quality attributes, necessitate a meticulous selection of drying methods and conditions backed by robust research. In this review, we investigate challenges associated with drying these heat-sensitive materials and examine the impact of various drying methods.
View Article and Find Full Text PDFFront Artif Intell
December 2024
HPC Laboratory, Department of Engineering and Geology, University "G. d'Annunzio" Chieti-Pescara, Pescara, Italy.
The construction industry is rapidly adopting Industry 4.0 technologies, creating new opportunities to address persistent environmental and operational challenges. This review focuses on how Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are being leveraged to tackle these issues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!