Triboelectric nanogenerators (TENGs) have garnered considerable interest as a promising technology for energy harvesting and stimulus sensing. While TENGs facilitate the generation of electricity from micro-motions, the modular design of TENG-based modular sensing systems (TMSs) also offers significant potential for powering biosensors and other medical devices, thus reducing dependence on external power sources and enabling biological processes to be monitored in real time. Moreover, TENGs can be customised and personalized to address individual patient needs while ensuring biocompatibility and safety, ultimately enhancing the efficiency and security of diagnosis and treatment. In this review, we concentrate on recent advancements in the modular design of TMSs for clinical applications with an emphasis on their potential for personalised real-time diagnosis. We also examine the design and fabrication of TMSs, their sensitivity and specificity, and their capabilities of detecting biomarkers for disease diagnosis and monitoring. Furthermore, we investigate the application of TENGs to energy harvesting and real-time monitoring in wearable and implantable medical devices, underscore the promising prospects of personalised and modular TMSs in advancing real-time diagnosis for clinical applications, and offer insights into the future direction of this burgeoning field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181202 | PMC |
http://dx.doi.org/10.3390/s23094194 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Georgia Institute of Technology, School Of Chemistry and Biochemistry, 901 Atlantic Drive, 30332, United States, 30332, Atlanta, UNITED STATES OF AMERICA.
The development of chemically recyclable polymers for sustainable 3D printing is crucial to reducing plastic waste and advancing towards a circular polymer economy. Here, we introduce a new class of polythioenones (PCTE) synthesized via Michael addition-elimination ring-opening polymerization (MAEROP) of cyclic thioenone (CTE) monomers. The designed monomers are straightforward to synthesize, scalable and highly modular, and the resulting polymers display mechanical performance superior to commodity polyolefins such as polyethylene and polypropylene.
View Article and Find Full Text PDFTalanta
January 2025
School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China. Electronic address:
The use of dynamic DNA logic circuits for disease diagnosis at the molecular level plays a considerable role in biomedical fields. Nevertheless, how to create programmable nanomachines based on molecular logical gates to accurately identify multiple biomarkers from tumor cells remains a pivotal challenge. Herein, we developed a DNA-based nanomachine for analyzing and imaging multiple microRNAs (miRNAs) in cancerous cells with a logical AND operation.
View Article and Find Full Text PDFClin Biomech (Bristol)
January 2025
Faculty of Mechanical Engineering (FEMEC), Federal University of Uberlândia, Uberlândia, MG, Brazil.
Background: Wheelchair users face various health issues, such as cardiac problems, obesity, tissue deformation, and shoulder and wrist injuries. Although the subject of ergometry is known since 1912 and the mechanic of propulsion gesture and wheelchair configuration has been studied over the years, most of the equipment found in the literature are adaptations or lack the tools for standardization of techniques. This paper aims to conduct biomechanical validation of a new wheelchair ergometer (ERGO1) designed for assessing physical fitness and muscle training of the upper limbs of people with disabilities.
View Article and Find Full Text PDFAdv Biol (Weinh)
January 2025
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, CHINA.
Targeted degradation of membrane proteins represents an attractive strategy for eliminating pathogenesis-related proteins. Aptamer-based chimeras hold great promise as membrane protein degraders, however, their degradation efficacy is often hindered by the limited structural stability and the risk of off-target effects due to the non-covalent interaction with target proteins. We here report the first design of a covalent aptamer-based autophagosome-tethering chimera (CApTEC) for the enhanced autophagic degradation of cell-surface proteins, including transferrin receptor 1 (TfR1) and nucleolin (NCL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!