Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Low-density polyethylene (LDPE) films are widely used in packaging, insulation and many other commodity applications due to their excellent mechanical and chemical properties. However, the water-wetting and water-repellant properties of these films are insufficient for certain applications. In this study, bare LDPE and textured LDPE (T-LDPE) films were subjected to low-pressure plasmas, such as carbon tetrafluoride (CF) and hydrogen (H), to see the effect of plasma treatment on the wetting properties of LDPE films. In addition, the surface of the LDPE film was textured to improve the hydrophobicity through the lotus effect. The LDPE and T-LDPE films had contact angle (θ) values of 98.6° ± 0.6 and 143.6° ± 1.0, respectively. After CF plasma treatments, the θ values of the surfaces increased for both surfaces, albeit within the standard deviation for the T-LDPE film. On the other hand, the contact angle values after H plasma treatment decreased for both surfaces. The surface energy measurements supported the changes in the contact angle values: exposure to H plasma decreased the contact angle, while exposure to CF plasma increased the contact angle. Kinetic friction force measurements of water drops on LDPE and T-LDPE films showed a decrease in friction after the CF4 plasma treatment, consistent with the contact angle and surface energy measurements. Notably, the kinetic friction force measurements proved to be more sensitive compared to the contact angle measurements in differentiating the wetting properties of the T-LDPE versus 3× CF-plasma-treated LDPE films. Based on Atomic Force Microscopy (AFM) images of the flat LDPE samples, the 3× CF4 plasma treatment did not significantly change the surface morphology or roughness. However, in the case of the T-LDPE samples, Scanning Electron Microscopy (SEM) images showed noticeable morphological changes, which were more significant at sharp edges of the surface structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181085 | PMC |
http://dx.doi.org/10.3390/polym15092132 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!