Innovative Collagen Based Biopolymers Tested as Fertilizers for Poor Soils Amendment.

Polymers (Basel)

Department of Mathematical Methods and Models, Faculty of Applied Sciences, University Politehnica of Bucharest, 313 Splaiul Independentei Str., 060042 Bucharest, Romania.

Published: April 2023

Improving soil quality is of growing interest and, among optimal solutions, the reuse and recycling of biopolymers of pelt waste from the tannery industry have been proposed, one of them being for collagen hydrolysate with micronutrients and polymers incorporated, to be used as fertilizers for poor soils rehabilitation. As functionalization agents, polyacrylamide, starch and dolomite were included into biopolymer matrixes in order to enhance their specific efficiency. These fertilizers were adequately characterized for their physical-chemical properties, including nutrient content, and tested on three poor soils, while a fourth sample of normal soil was chosen for comparative purposes. These soils were also characterized for their texture and physical-chemical properties in order to establish the fertility state of the soils as a function of nutrient content. In this respect, a series of agrochemical tests were developed at laboratory scale, simulating real agriculture environments in a vegetation room, where a significant plant growth in height was observed for all the agro-hydrogels with nutrients encapsulated, and multiplication of the nodosities number was observed in the case of the soybean culture. The most significant effect was obtained in the case of the fertilizer functionalized with starch. Finally, the application dose of the organic fertilizers for specific culture plants was estimated, such as field cultures (cereals, corn), field vegetables, vineyards or fruit-growing plantations. These agro-collagen fertilizers are particularly recommended for amendment of field cereals and vegetables. The novelty of this study mainly consists of the recovery and recycling of the pelt waste as efficient fertilizers after their adequate functionalization with synthetic or natural biopolymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181486PMC
http://dx.doi.org/10.3390/polym15092085DOI Listing

Publication Analysis

Top Keywords

poor soils
12
fertilizers poor
8
pelt waste
8
physical-chemical properties
8
nutrient content
8
fertilizers
6
soils
5
innovative collagen
4
collagen based
4
based biopolymers
4

Similar Publications

Burning of municipal waste in household furnaces and the health of their owners.

Sci Rep

December 2024

Prospecting and Environment Laboratory (Promediam), Universidad Politecnica de Madrid, Alenza 4, 28003, Madrid, Spain.

The aim of the study was to determine the scale of emission and airborne dispersion of selected pollutants (PM2.5, PM10, TVOC, HCHO) associated with the combustion of various types of municipal waste (MW), its mixed stream and separate fractions, in a household furnace, as compared to conventional (CF) and alternative (AF) fuels. We demonstrated that each type of fuel (AF, CF, AFw) combusted in a household furnace is a significant source of air pollutants, especially fine PM2.

View Article and Find Full Text PDF

Growth-promoting effects of self-selected microbial community on wheat seedlings in saline-alkali soil environments.

Front Bioeng Biotechnol

December 2024

Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China.

Saline-alkali land is a type of soil environment that causes poor crop growth and low yields. Its management and utilization are, therefore of great significance for increasing arable land resources, ensuring food security, and enhancing agricultural production capacity. The application of plant growth-promoting rhizobacteria (PGPR) is an effective way to promote the establishment of symbiotic relationships between plants and the rhizosphere microenvironment, plant growth and development, and plant resistance to saline-alkali stress.

View Article and Find Full Text PDF

Human alveolar echinococcosis (HAE), which is caused by the larval stage of the Echinococcus multilocularis tapeworm, is an increasing healthcare issue in Hungary. Among the 40 known cases in the country, 25 were detected in the last five years. Our study aimed to reveal the geographically underlying risk factors associated potentially with these cases.

View Article and Find Full Text PDF

Clarifying the pore-throat size and pore size distribution of tight sandstone reservoirs, quantitatively characterizing the heterogeneity of pore-throat structures, is crucial for evaluating reservoir effectiveness and predicting productivity. Through a series of rock physics experiments including gas measurement of porosity and permeability, casting thin sections, scanning electron microscopy, and high-pressure mercury injection, the quality of reservoir properties and microscopic pore-throat structure characteristics were systematically studied. Combined with fractal geometry theory, the effects of different pore throat types, geometric shapes and scale sizes on the fractal characteristics and heterogeneity of sandstone pore throat structure are clarified.

View Article and Find Full Text PDF

Okra has recently attracted attention owing to its superior tolerance to high temperatures, greater adaptation to poor soil conditions, and having a robust plant structure. The plant contains a high amount of oil and valuable fatty acids; however, the main restriction of using okra seeds as an oil crop results from its gossypol contents. The aim of this study was to determine the oil content of okra landraces and to evaluate its potential as an oil crop.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!