A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultramicroporous Polyphenylenes via Diels-Alder Polycondensation Approach. | LitMetric

Development of new microporous organic polymers attracts significant attention due to a wide scope of promising applications. In addition, the synthesis of soluble, non-crosslinking polymers of high surface area and uniform microporosity is very challenging, and the methods for soluble microporous polymers formation are rather limited. In this work, we report a new approach to construct porous polyphenylenes which employs the Diels-Alder polycondensation of multifunctional ethynyl-containing monomers of different spatial architecture with bis(cyclopentadienone)s. The resulting polymers were soluble in common organic solvents, and their structure and properties were assessed by NMR, TGA, DSC, and SEC studies. The polymers demonstrated a specific surface area up to 751 m·g and ultramicroporous (pore size ≤ 0.6 nm) structure. N and CO adsorption-desorption data revealed that porosity parameters, e.g., specific surface area and pore sizes, can be tuned selectively by varying the type of monomers and reaction conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181309PMC
http://dx.doi.org/10.3390/polym15092060DOI Listing

Publication Analysis

Top Keywords

surface area
12
diels-alder polycondensation
8
specific surface
8
polymers
5
ultramicroporous polyphenylenes
4
polyphenylenes diels-alder
4
polycondensation approach
4
approach development
4
development microporous
4
microporous organic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!