A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiong9qens1i6g2qc2k87uob8rri6baf6ogb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Crushing Responses of Expanded Polypropylene Foam. | LitMetric

Crushing Responses of Expanded Polypropylene Foam.

Polymers (Basel)

College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.

Published: April 2023

This paper aimed to experimentally clarify the crushing mechanism and performance of expanded polypropylene foam (EPP) and analyze the influence of density and thickness on its mechanical behavior and energy absorption properties under static crushing loadings. Hence, a series of compression tests were carried out on EPP foams with different densities and thicknesses. For foam with a density of 60 kg/m, the mean crushing strength, energy absorption (E, energy absorption efficiency (E), specific energy absorption (SEA), and energy absorption per unit volume (w) increased by 245.3%, 187.2%, 42.3%, 54.3%, and 242.8%, respectively, compared to foam with a density of 20 kg/m. Meanwhile, compared to foam with a thickness of 30 mm, the mean crushing strength, energy absorption (), energy absorption efficiency (), SEA, and energy absorption per unit volume () for foam with a thickness of 75 mm increased by 53.3%, 25.2%, -10.8%, -4.7%, and -10.6%, respectively. The results show that foam density has a significantly greater influence on static compressive performance than foam thickness. The microstructures of the EPP foam before and after static compression were compared by observing with a scanning electron microscope (SEM), and the failure mechanism was analyzed. Results showed that the load and energy as well as the deformation and instability processes of its cells were transferred layer by layer. The influence of density on the degree of destruction of the internal cells was obvious. Due to its larger mass and larger internal damping, thicker foams were less damaged, and less deformation was produced. Additionally, the EPP foam exhibited a considerable ability to recover after compression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181497PMC
http://dx.doi.org/10.3390/polym15092059DOI Listing

Publication Analysis

Top Keywords

energy absorption
32
foam density
12
foam thickness
12
foam
10
energy
9
expanded polypropylene
8
polypropylene foam
8
influence density
8
absorption
8
density kg/m
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!