This article presents the effect of the addition of condensed tannins, used as a reticulation agent, on the polymerization of furfuryl alcohol during wood furfurylation, as well as the effect of these condensed tannins on the thermal stability of modified wood. Three kinds of dicarboxylic acids (adipic acid, succinic acid, and tartaric acid), as well as glyoxal, used as model of a wood reticulation agent, were used to catalyze the polymerization of furfuryl alcohol or tannin-furfuryl alcohol solutions. Impregnation of furfuryl alcohol or tannin-furfuryl alcohol solution into the wood, followed by curing at 103 °C for a specific duration, was performed for the wood modification. The thermal stability of the obtained tannin-furfuryl alcohol polymers and their corresponding modified woods was investigated. The leaching resistance and dimensional stability of the modified woods were also evaluated. Results indicated that the partial substitution of furfuryl alcohol by the tannins improved the polymerization reactivity in conditions where furfuryl alcohol alone did not lead to the formation of a solid polymeric material. The thermal stability and leaching resistance of the furfurylated wood in the presence of tannins were improved. Dimensional stability was also improved for furfurylated samples, but the effect of tannin addition was not so obvious, depending on the acidic catalyst used.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181319 | PMC |
http://dx.doi.org/10.3390/polym15092044 | DOI Listing |
Chem Commun (Camb)
December 2024
Inorganic Materials & Heterogeneous Catalysis Laboratory, Department of Chemistry, School of Physical Sciences, Central University of Kerala, Tejaswini Hills Kasaragod, 671316 Kerala, India.
A tetragonal zirconia-faujasitic SAPO-37 zeolite composite (SAP-37ZR) was synergistically stabilised at 550 °C using a temperature programmed reduction method. The presence of the zeolite-ZrO composite phase was confirmed through powder XRD reflection, SEM and TEM-ED pattern analyses. The developed SAP-37ZR composite, exhibiting moderate acidity, was found to be highly active for the production of ethyl levulinate (EL) from furfuryl alcohol with a 99% yield.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
PdCu/NC and PdCo/NC with different metal mass ratios of Pd to Cu (or Co) are synthesized. They (Pd : Cu (or Co) = 3 : 7) show excellent catalytic activity and high selectivity to furfuryl alcohol (FA) (or tetrahydrofurfuryl alcohol (THFA)) under quite mild conditions due to synergistic effect of Pd-Cu (Co)-NC.
View Article and Find Full Text PDFRSC Adv
November 2024
Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520 Thailand +66-2-324-8000.
Dalton Trans
December 2024
School of Chemistry and Chemical Engineering, Institute of Materials Sciences and Engineering, Institute of Clean Energy and Advanced Nanocatalysis (iClean), Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan 243002, China.
Utilizing photocatalytic technology for the value-added conversion of biomass derivatives, alongside the production of clean hydrogen energy, represents a viable approach to addressing energy and environmental challenges. However, the design of cost-effective and efficient photocatalysts remains a significant obstacle. In this work, we employed open-framework Prussian blue analogs as co-catalytic centers and combined them with ZnInS to construct a series of core-shell nanocube photocatalysts with varying metal compositions.
View Article and Find Full Text PDFFoods
November 2024
The Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
The impact of mechanized processes on the properties of Xifeng Baijiu, as well as the differences between Baijiu produced through mechanized versus traditional methods, remains insufficiently understood. In this study, the differences in physicochemical properties, microorganisms, volatile flavor compounds, and their correlations in the traditional and mechanized processes of producing Xifeng Baijiu were compared. High-throughput sequencing revealed that the abundance and diversity of bacteria and fungi were higher in the traditional process compared to the mechanized one.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!