Chitosan/PVA nanofibrous electroresponsive soft actuators were successfully obtained using an electrospinning process, which showed fast speed displacement under an acidic environment. Chitosan/PVA nanofibers were prepared and characterized, and their electroactive response was tested. Chitosan/PVA nanofibers were electrospun from a chitosan/PVA solution at different chitosan contents (2.5, 3, 3.5, and 4 wt.%). Nanofibers samples were characterized using Fourier transform infrared analyses, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), optical microscopy, and tensile test. The electroactive behavior of the nanofiber hydrogels was tested under different HCl pH (2-6) under a constant voltage (10 V). The electroactive response test showed a dependence between the nanofiber's chitosan content and pH with the bending speed displacement, reaching a maximum speed displacement of 1.86 mm in a pH 3 sample with a chitosan content of 4 wt.%. The results of the electroactive response were further supported by the determination of the proportion of free amine groups, though deconvoluting the FTIR spectra in the range of 3000-3700 cm. Deconvolution results showed that the proportion of free amine increased as the chitosan content was higher, being 3.6% and 4.59% for nanofibers with chitosan content of 2.5 and 4 wt.%, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181017 | PMC |
http://dx.doi.org/10.3390/polym15092037 | DOI Listing |
Food Res Int
January 2025
School of Food and Biological Engineering, Jiangsu University, 212013, Zhenjiang, Jiangsu, China. Electronic address:
Atmosphere-controlled high-voltage electrospray (AHES) was utilised to modify the structure of chitosan (CS) films. The applied voltage in the AHES process ranged from 60 to 100 kV, with variations in the O content of the propellant gas from 0 to 100 %. The number density of cations in the charging environment reached 600 × 10 cations/cm.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
Constructing a nanofibrous membrane with high flow rate surface pore structure and high-density ligand chemical structure is a promising strategy to balance the trade-off between high flow rates and high adsorption capacity for protein separation and purification. Herein, a nanofiber-based ion-exchange chromatography membrane with a periodic diagonal surface structure and high ionic strength ligands was fabricated using dispersion cross-linking, wet coating, and template printing with a three-wire diagonal woven mesh. For this membrane, EVOH nanofibers were used as skeleton, glutaraldehyde (GA) as cross-linking agent, and quaternized chitosan (QCS) as binder and functional ligand.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physical Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 3, 20-031 Lublin, Poland.
In this article, we report on the research on the synthesis of composites based on a porous, highly ordered silica material modified by a metallic nanophase and chitosan biofilm. Due to the ordered pore system of the SBA-15 silica, this material proved to be a good carrier for both the biologically active nanophase (highly dispersed silver nanoparticles, AgNPs) and the adsorption active phase (chitosan). The antimicrobial susceptibility was determined against Gram-positive ATCC 25923, Gram-negative bacterial strains ( ATCC 25922, ATCC 700603, and ATCC 27853), and yeast ATCC 90028.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Biotechnology, University of Verona, 37134 Verona, Italy.
Olive phenolic compounds like hydroxytyrosol (OH-Tyr), tyrosol (Tyr), and their precursors have different health-promoting properties, mainly based on their strong antioxidant capacity. However, their presence in extra-virgin olive oil (EVOO) is scarce since they are primarily contained in the by-products of oil production, such as olive pomace (OP). The aim of this work was to extract and encapsulate OP phenolic compounds into chitosan-tripolyphosphate nanoparticles (NPs) using an ionotropic gelation lyophilization approach to increase their resistance to environmental and chemical stress.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
The application of biodegradable chelating agents in phytoremediation is a promising approach. This study aimed to investigate the effects and roles of underlying mechanisms of water-soluble carboxymethyl chitosan (WSCC) and rhamnolipids (RLs) on the remediation of Cd-contaminated soil by Hylotelephium spectabile. WSCC and RLs mediated the growth of H.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!