Perovskite-type lead halides exhibit promising performances in optoelectronic applications, for which lasers are one of the most promising applications. Although the bulk structure has some advantages, perovskite has additional advantages at the nanoscale owing to its high crystallinity given by a lower trap density. Although the nanoscale can produce efficient light emission, its comparatively poor chemical and colloidal stability limits further development of devices based on this material. Nevertheless, bulk perovskites are promising as optical amplifiers. There has been some developmental progress in the study of optical response and amplified spontaneous emission (ASE) as a benchmark for perovskite bulk phase laser applications. Therefore, to achieve high photoluminescence quantum yields (PLQYs) and large optical gains, material development is essential. One of the aspects in which these goals can be achieved is the incorporation of a bulk structure of high-quality crystallization films based on inorganic perovskite, such as cesium lead halide (CsPb(Br/Cl)), in polymethyl methacrylate (PMMA) polymer and encapsulation with the optimal thickness of the polymer to achieve complete surface coverage, prevent degradation, surface states, and surface defects, and suppress emission at depth. Sequential evaporation of the perovskite precursors using a single-source thermal evaporation technique (TET) effectively deposited two layers. The PL and ASEs of the bare and modified films with a thickness of 400 nm PMMA were demonstrated. The encapsulation layer maintained the quantum yield of the perovskite layer in the air for more than two years while providing added optical gain compared to the bare film. Under a picosecond pulse laser, the PL wavelength of single excitons and ASE wavelength associated with the stimulated decay of bi-excitons were achieved. The two ASE bands were highly correlated and competed with each other; they were classified as exciton and bi-exciton recombination, respectively. According to the ASE results, bi-exciton emission could be observed in an ultrastable CsPb(Br/Cl) film modified by PMMA with a very low excitation energy density of 110 µJ/cm. Compared with the bare film, the ASE threshold was lowered by approximately 5%. A bi-exciton has a binding energy (26.78 meV) smaller than the binding energy of the exciton (70.20 meV).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181364 | PMC |
http://dx.doi.org/10.3390/polym15091978 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!