This paper aims to provide some insights into the pH and electrical conductivity of two classes of nanocolloids with PEG 400 as the base fluid. Thus, nanoparticles of two oxides-MgO and TiO-were added to the base fluid in 5 mass concentrations in the range 0.25-2.5 %wt. The stability was evaluated in terms of pH at ambient temperature, while the electrical conductivity was discussed at both ambient temperature and up to 333.15 K. The electrical conductivity of PEG 400 was previously discussed by this group, while the behavior of the new nanocolloids was debated in terms of the state of the art. More precisely, the influence of MgO increases electrical conductivity, and an enhancement of up to 48% for 0.25% MgO was found, while the influence of TiO nanoparticles was found to be in similar ranges. In conclusion, electrical conductivity varies with temperature and the addition of nanoparticles to the base fluid, although the mechanisms that are driving the nanoparticle type and concentration influence are not yet entirely assumed in the available literature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180904 | PMC |
http://dx.doi.org/10.3390/nano13091555 | DOI Listing |
In this study, we investigate the thermoelectric properties of functionalized multi-walled carbon nanotubes (F-MWCNTs) dispersed over a flexible substrate through a facile vacuum filtration route. To improve their interfacial adhesion and dispersion, F-MWCNTs underwent hot-pressing. The heat-treatment has improved the nanotubes' connections and subsequently reduced porosity as well, which results in an increasing electrical conductivity upon increasing temperature of hot-pressing.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Physics, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India.
In this study, we investigate a novel hybrid borocarbonitride (bpn-BCN) 2D material inspired by recent advances in carbon biphenylene synthesis, using first-principles calculations and semi-classical Boltzmann transport theory. Our analysis confirms the structural stability of bpn-BCN through formation energy, elastic coefficients, phonon dispersion, and molecular dynamics simulations at 300 K and 800 K. The material exhibits an indirect band gap of 0.
View Article and Find Full Text PDFBMC Ecol Evol
January 2025
Botany & Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt.
Background: The destructive human activities, encroachment of natural habitats, and hyperarid climate threaten the wild flora of the unprotected mountainous areas facing the Gulf of Suez, Egypt. So, this study aims to revise and give an updated systematic status of the flowering plants growing there to conserve and utilize valuable biodiversity.
Results: This study showed the presence of 136 species, including 7 sub-species of vascular plants, 12 species of monocots, and 124 species dicots belonged to 98 genera and 37 families.
Environ Technol
January 2025
Solid-State Physics and Accelerators Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
Waste polyethylene (WPE) and virgin polyethylene (VPE) (50:50) thermoplastic have been melt-mixed with biochar (BC) made from orange peels at ratios of 5, 10, and 15(Phr) to evaluate how the filler content affected the mechanical, thermal, optical, electrical conductivity, and electromagnetic interference (EMI). γ-rays was applied to the prepared specimens to assess how radiation affected the created biocomposites. From the obtained results, the combination of BC with γ-rays, at doses of up to 100 kGy, with thermoplastic resulted in an enhanced mechanical property, particularly for composites containing 15 Phr of BC added because of its unique structure and excellent dispersion.
View Article and Find Full Text PDFDiscov Nano
January 2025
Physics Department/Faculty of Science, Sana'a University, Sana'a, Yemen.
The study highlights the significant effects of Zn ions concentration on the optical properties of BaNiZnFeO ferrites, emphasizing the tunability of the band gap through Zn doping and explores their potential to enhance their optical properties. The barium-nickel ferrite powder, with the composition BaNiZnFeO, was synthesized using the ceramic method. The effects of Zn doping were analyzed using X-ray diffraction (XRD) and UV‒visible (UV-Vis) spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!