A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomass-Derived Sustainable Electrode Material for Low-Grade Heat Harvesting. | LitMetric

Biomass-Derived Sustainable Electrode Material for Low-Grade Heat Harvesting.

Nanomaterials (Basel)

Department of Mechanical Engineering, Incheon National University, Incheon 22012, Republic of Korea.

Published: April 2023

The ever-increasing energy demand and global warming caused by fossil fuels push for the exploration of sustainable and eco-friendly energy sources. Waste thermal energy has been considered as one of the promising candidates for sustainable power generation as it is abundantly available everywhere in our daily lives. Recently, thermo-electrochemical cells based on the temperature-dependent redox potential have been intensely studied for efficiently harnessing low-grade waste heat. Despite considerable progress in improving thermocell performance, no attempt was made to develop electrode materials from renewable precursors. In this work, we report the synthesis of a porous carbon electrode from mandarin peel waste through carbonization and activation processes. The influence of carbonization temperature and activating agent/carbon precursor ratio on the performance of thermocell was studied to optimize the microstructure and elemental composition of electrode materials. Due to its well-developed pore structure and nitrogen doping, the mandarin peel-derived electrodes carbonized at 800 °C delivered the maximum power density. The areal power density () of 193.4 mW m and (Δ) of 0.236 mW m K were achieved at Δ of 28.6 K. However, KOH-activated electrodes showed no performance enhancement regardless of activating agent/carbon precursor ratio. The electrode material developed here worked well under different temperature differences, proving its feasibility in harvesting electrical energy from various types of waste heat sources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180141PMC
http://dx.doi.org/10.3390/nano13091488DOI Listing

Publication Analysis

Top Keywords

electrode material
8
waste heat
8
electrode materials
8
activating agent/carbon
8
agent/carbon precursor
8
precursor ratio
8
power density
8
electrode
5
biomass-derived sustainable
4
sustainable electrode
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!