A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation of Program Efficiency Overshoot in 3D Vertical Channel NAND Flash with Randomly Distributed Traps. | LitMetric

The incremental step pulse programming slope (ISPP) with random variation was investigated by measuring numerous three-dimensional (3D) NAND flash memory cells with a vertical nanowire channel. We stored multiple bits in a cell with the ISPP scheme and read each cell pulse by pulse. The excessive tunneling from the channel to the storage layer determines the program efficiency overshoot. Then, a broadening of the threshold voltage distribution was observed due to the abnormal program cells. To analyze the randomly varying abnormal program behavior itself, we distinguished between the read variation and over-programming in measurements. Using a 3D Monte-Carlo simulation, which is a probabilistic approach to solve randomness, we clarified the physical origins of over-programming that strongly influence the abnormal program cells in program step voltage, and randomly distributed the trap site in the nitride of a nanoscale 3D NAND string. These causes have concurrent effects, but we divided and analyzed them quantitatively. Our results reveal the origins of the variation and the overshoot in the ISPP, widening the threshold voltage distribution with traps randomly located at the nanoscale. The findings can enhance understanding of random over-programming and help mitigate the most problematic programming obstacles for multiple-bit techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180439PMC
http://dx.doi.org/10.3390/nano13091451DOI Listing

Publication Analysis

Top Keywords

abnormal program
12
program efficiency
8
efficiency overshoot
8
nand flash
8
randomly distributed
8
threshold voltage
8
voltage distribution
8
program cells
8
program
5
investigation program
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!