Glomalin-related soil protein (GRSP) is a hydrophobic protein released by arbuscular mycorrhizal fungi. It is an important component of the soil carbon pool, and it improves the soil aggregate structure; however, it remains unclear whether GRSP can enhance soil carbon sequestration and improve soil quality during rapid urbanization. The built-up area in Nanchang, China was the study area, and the proportion of impervious surface area was the parameter of urbanization intensity. A total of 184 plots (400 m) were set up to collect soil samples (0-20 cm) for analysis. Aggregates of five particle sizes were sieved, and the percentage amounts of soil organic carbon (SOC) and GRSP for them were determined. The results showed that the easily extractable GRSP (EE-GRSP) and total GRSP (T-GRSP) contents of the four aggregates of <2 mm were 22-46% higher in low urbanization areas than those in high urbanization areas ( < 0.05), indicating that the higher urbanization intensity was associated with the lower GRSP content of different aggregates. The GRSP was significantly positively correlated with SOC ( < 0.05). Moreover, the contribution of GRSP to the SOC pool in the <0.25 mm aggregate was significantly higher than that in other aggregates. In addition, the EE-GRSP content was significantly positively correlated with mean weight diameter (MWD) and geometric mean diameter (GMD) in the four aggregates of <2 mm, whereas it was negatively correlated with fractal dimension (D) in the >2 mm, 1-2 mm and <0.053 mm aggregates. The T-GRSP content showed significant correlations only with MWD, GMD, and D in the 1-2 mm aggregate. This study revealed that increasing urbanization intensity can significantly reduce the GRSP content of different sized aggregates. Moreover, the GRSP content significantly promoted SOC sequestration, and the EE-GRSP content more significantly promoted soil aggregate stability than that of the T-GRSP. These findings provide new ideas for exploring the improvement of soil quality during the process of urbanization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180894 | PMC |
http://dx.doi.org/10.3390/plants12091847 | DOI Listing |
Environ Sci Technol
January 2025
Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen 72076, Germany.
Defects are common features in hematite that arise from deviations from the perfect mineral crystal structure. Vacancy defects have been shown to significantly enhance arsenate (As) immobilization by hematite. However, the contributions from vacancy defects on different exposed facets of hematite have not been fully quantified.
View Article and Find Full Text PDFSci Prog
January 2025
Department of Environmental and Industrial Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia.
Objective: Heavy metal pollution is one of the more recent problems of environmental degradation caused by rapid industrialization and human activity. The objective of this study was to isolate, screen, and characterize heavy metal-resistant bacteria from solid waste disposal sites.
Methods: In this study, a total of 18 soil samples were randomly selected from mechanical sites, metal workshops, and agricultural land that received wastewater irrigation.
Biotechniques
January 2025
Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
Observation of plant root morphology in soil is of fundamental importance in plant research, but the lack of transparency of the soil hampers direct observation of roots. One of the approaches to overcome this technical limitation is the use of "transparent soil" (TS), hydrogel-based beads produced by spherification of gelling agents. However, the production of TS by natural dripping of gelling solution can be labor intensive, time consuming and difficult to maintain consistent product quality.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institut Sénégalais de Recherches Agricoles (ISRA/Centre d'Etude Regional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), Thies, Senegal.
Early leaf spot (ELS), caused by (syn. ), is a highly damaging peanut disease worldwide. While there are limited sources of resistance in cultivated peanut cultivars, wild relatives carry alleles for strong resistance, making them a valuable strategic resource for peanut improvement.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Excessive utilization of chemical fertilizers degrades the quality of medicinal plants and soil. Bio-organic fertilizers (BOFs) including microbial inoculants and microalgae have garnered considerable attention as potential substitutes for chemical fertilizer to enhance yield. In this study, a field experiment was conducted to investigate the effects of BOF partially substituting chemical fertilizer on the growth and quality of medicinal plant .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!