Impaired % predicted value forced vital capacity (% FVC) is related to higher all-cause mortality in aged adults, and strong muscle force may improve this relationship. A muscle disease, sarcopenia, causes higher mortality. We aimed to identify the unknown disease that relates impaired % FVC with higher mortality in aged adults among the three major leading causes of death, and the effect of strong leg force on this relationship. Cox proportional hazard model analyzed the longitudinal Tsurugaya cohort that registered 1048 aged Japanese for 11 years. The primary outcome was the relationship between % FVC and mortality by cancer, cardiovascular disease, or pneumonia. Exposure variables were % FVC or leg force divided by 80% or median values, respectively. The secondary outcome was the effects of leg force on the relationship. Among the diseases, % FVC < 80% was related only to higher pneumonia mortality (hazard ratio [HR], 4.09; 95% CI, 1.90-8.83) relative to the % FVC ≥ 80% group before adjustment. Adding the leg force as an explanatory variable reduced the HR to 3.34 (1.54-7.25). Weak leg force might indicate sarcopenia, and its prevention may improve higher pneumonia mortality risk related to impaired % FVC, which we may advise people in clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179042PMC
http://dx.doi.org/10.3390/jcm12093272DOI Listing

Publication Analysis

Top Keywords

leg force
20
pneumonia mortality
12
forced vital
8
vital capacity
8
fvc higher
8
mortality aged
8
aged adults
8
higher mortality
8
impaired fvc
8
force relationship
8

Similar Publications

Objective: This study aimed to investigate the effects of a 12-week self-designed exercise game intervention on the kinematic and kinetic data of the supporting leg in preschool children during the single-leg jump.

Methods: Thirty 5- to 6-year-old preschool children were randomly divided into an experimental group (EG) and a control group (CG). The BTS SMART DX motion capture analysis system was used to collect single-leg jump data before the intervention.

View Article and Find Full Text PDF

Inchworm Robots Utilizing Friction Changes in Magnetorheological Elastomer Footpads Under Magnetic Field Influence.

Micromachines (Basel)

December 2024

Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea.

The application of smart materials in robots has attracted considerable research attention. This study developed an inchworm robot that integrates smart materials and a bionic design, using the unique properties of magnetorheological elastomers (MREs) to improve the performance of robots in complex environments, as well as their adaptability and movement efficiency. This research stems from solving the problem of the insufficient adaptability of traditional bionic robots on different surfaces.

View Article and Find Full Text PDF

Background: Objective training load (TL) indexes used in resistance training lack physiological significance. This study was aimed to provide a muscle physiology-based approach for quantifying TL in resistance exercises (REs).

Methods: Following individual torque-velocity profiling, fifteen participants (11 healthy males, stature: 178.

View Article and Find Full Text PDF

Analysis of the Feasibility of the OrthoNail Hybrid Intramedullary Implant in the Human Body with Respect to Material Durability.

J Funct Biomater

January 2025

Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland.

This study focuses on the development and evaluation of the OrthoNail hybrid intramedullary implant for lower limb lengthening in patients requiring significant skeletal reconstruction. The implant addresses the challenges in load-bearing during rehabilitation, providing a robust solution that is capable of supporting physiological loads. Mechanical tests, including axial compression, tension, torsion, and 3,4-point bending, determined the implant's load capacity and fatigue resistance, while finite element analysis assessed stress distributions in bone tissue and around screw holes during single-leg stance, with boundary conditions derived from Orthoload database data.

View Article and Find Full Text PDF

Multirotor drones are widely used in fields such as environmental monitoring, agricultural inspection, and package delivery, but they still face numerous challenges in durability and aerial operation capabilities. To address these issues, this paper presents a biomimetic leg-claw mechanism (LCM) inspired by the biomechanics of birds. The claw of the LCM adopts a bistable gripper design that can rapidly close through external impact or actively close via the coordination of internal mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!