Materials (Basel)
Wuhan Hanyang Municipal Construction Group Co., Ltd., Wuhan 430050, China.
Published: May 2023
As a municipal solid waste, waste glass undergoes pozzolanic activity when ground to a certain fineness. In this paper, calcium carbide residue (CCR) and NaCO were used as composite alkali activators for a glass powder-based composite cementitious system. A total of 60% fly ash (FA) and 40% ground granulated blast furnace slag (GGBS) were used as the reference group of the composite cementitious material system, and the effects of 5%, 10%, 15%, and 20% glass powder (GP) replacing FA on the rheological behavior, mechanical properties, and microstructure of alkali-activated composite cementitious systems were investigated. The results showed that with the increase in GP replacing FA, the fluidity of the alkali-activated materials gradually decreased, the shear stress and the equivalent plastic viscosity both showed an increasing trend, and the paste gradually changed from shear thinning to shear thickening. Compared with the reference sample, the fluidity of the alkali-activated material paste with a 20% GP replacement of FA was reduced by 15.3%, the yield shear stress was increased by 49.6%, and the equivalent plastic viscosity was elevated by 32.1%. For the 28d alkali-activated material pastes, the compressive strength and flexural strength were increased by 13% and 20.3%, respectively. The microstructure analysis showed the substitution of FA by GP promoted the alkali-activated reaction to a certain extent, and more C-A-S-H gel was formed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179798 | PMC |
http://dx.doi.org/10.3390/ma16093590 | DOI Listing |
Materials (Basel)
January 2025
College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China.
Hydraulic structures are frequently subjected to soft-water or acidic environments, necessitating serious consideration of the long-term effects of calcium leaching on the durability of concrete structures. Three types of common Portland cement (ordinary Portland cement, moderate-heat cement, and low-heat cement) paste samples widely applied to hydraulic concrete were immersed in a 6 mol/L NHCl solution to simulate accelerated calcium leaching behavior. The mass loss, porosity, leaching depth, compressive strength, and Ca/Si ratio of the three types of pastes were measured at different immersion stages (0, 14, 28, 56, 91, 140, and 180 days).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
Magnesium slag is a by-product of the magnesium industry. As an auxiliary cementitious material incorporated into concrete, it can make full use of waste resources and has a certain potential for hydration and carbonation. To improve the mechanical properties of the concrete, the influence mechanism and strengthening mechanism of the carbon curing method on mechanical properties of magnesium slag concrete were investigated.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
Gasification slag is the solid waste produced in the process of coal gasification. China produces approximately 30 million tons of gasification slag every year, which urgently needs to be recycled in an efficient and sustainable way. This paper discusses the feasibility of using gasification slag as a supplementary cementitious material (SCM).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Structural Engineering, Mansoura University, PO BOX 35516, Mansoura, Egypt.
A novel type of concrete-encased steel (CES) composite column implementing Engineered Cementitious Composites (ECC) confinement (ECC-CES) has recently been introduced, offering significantly enhanced failure behavior, ductility, and toughness when compared to conventional CES columns. This study presents an innovative method for predicting the eccentric compressive capacity of ECC-CES columns, utilizing adaptive sampling and machine learning (ML) techniques. Initially, the research introduces a finite element (FE) model for ECC-CES columns, incorporating material and geometric nonlinearities to capture the inelastic behavior of both ECC and steel through appropriate constitutive material laws.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
This study investigates the microstructural characterization of cellulose nanocrystals (CNC) and microcellulose (MC) extracted from bamboo fibers () and their potential as reinforcement agents in ordinary Portland cement (OPC) composites. CNC with a mean particle size of 29.3 nm and MC with a mean size of 14.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.