The primary objective of this study was to synthesize and characterize novel silicon-based silyl organic compounds in order to gain a deeper understanding of their potential applications and interactions with other compounds. Four new artificial silyl organic compounds were successfully synthesized: 1-O-(Trimethylsilyl)-2,3,4,6-tetra-O-acetyl-β-d-glucopyranose (compound ), 1-[(1,1-dimethylehtyl)diphenylsilyl]-1H-indole (compound ), O-tert-butyldiphenylsilyl-(3-hydroxypropyl)oleate (compound ), and 1-O-tert-Butyldiphenylsilyl-myo-inositol (compound ). To thoroughly characterize these synthesized compounds, a combination of advanced mass spectrometric techniques was employed, including nanoparticle-assisted laser desorption/ionization mass spectrometry (NALDI-MS), Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and triple quadrupole electrospray tandem mass spectrometry (QqQ ESI-MS/MS). These analytical methods enabled the accurate identification and characterization of the synthesized silyl organic compounds, providing valuable insights into their properties and potential applications. Furthermore, the electrospray ionization-Fourier transform ion cyclotron resonance-tandem mass spectrometry (ESI-FT-ICR-MS/MS) technique facilitated the proposal of fragmentation pathways for the ionized silyl organic compounds, contributing to a more comprehensive understanding of their behavior during mass spectrometric analysis. These findings suggest that mass spectrometric techniques offer a highly effective means of investigating and characterizing naturally occurring silicon-based silyl organic compounds, with potential implications for advancing research in various fields and applications in different industries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179955 | PMC |
http://dx.doi.org/10.3390/ma16093563 | DOI Listing |
Talanta
January 2025
Center for Multiplatform Metabolomics Studies (CEMM) at the Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil. Electronic address:
There is no consensus in the literature regarding the ideal protocol for obtaining and preparing cell samples for untargeted metabolomics. Nevertheless, the procedures must be carefully evaluated for proper and reliable results for each organism under study. This work proposes a novel protocol for determining intracellular metabolites in Leishmania promastigotes and is fully optimized for application in conjunction with gas chromatography-mass spectrometry platforms.
View Article and Find Full Text PDFChemistry
January 2025
Université de Rennes 1, Chemistry, Equipe CORINT, Institut des Sciences Chimiques de Rennes, Université de Rennes 1 - UMR 6226 CNRS, Bâtiment 10A, Bureau 158, Avenue du Général Leclerc, 35042, Rennes, FRANCE.
Capozzi's groundbreaking work in 1982 introduced a fascinating reaction involving highly reactive tertiary aliphatic cations and silylated alkynes. This reaction provided an innovative solution to the challenge of coupling a fully substituted tertiary aliphatic fragment with an alkyne moiety. Building upon Capozzi's pioneering efforts, we started an extensive exploration of reaction conditions to expand the initial scope of this reaction.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.
View Article and Find Full Text PDFChemistry
January 2025
Centre CEA Paris-Saclay: Commissariat a l'Energie Atomique et aux Energies Alternatives Centre de Saclay, IRAMIS Institute, CEA - Saclay, 91190, Gif-Sur-Yvette, FRANCE.
The Schwartz's reagent Cp2Zr(H)Cl is a well known stoichiometric reagent for the reduction of unsaturated organic molecules but it has rarely been used in catalytic transformations. Herein, we describe the reduction of a variety of organic carbonates using the catalyst Cp2Zr(H)Cl in combination with Me(MeO)2SiH (DMMS) as reductant. This method was further applied to the reductive depolymerization of some polycarbonate materials and yielded silylated alcohols and diols in mild conditions.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania. Electronic address:
Herein, we present an efficient approach for developing electrochemical aptasensing interfaces, by "click" postfunctionalization of phenylethynyl-grafted glassy carbon substrates with mixed monolayers containing biorecognition elements and phosphorylcholine zwitterionic groups. Typically, controlling the composition of multicomponent surface layers by grafting from a mixture of aryldiazonium salts is challenging due to differences in their chemical reactivity. Our approach circumvents this issue by employing the electrochemical reduction of a single aryldiazonium salt containing a silyl-protected alkyne group followed by deprotection, to create phenylethynyl monolayers which can subsequently accommodate the concurrent immobilization of bioreceptors and zwitterionic groups through "click" postfunctionalization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!