Two sizes of test samples were selected to investigate the effect of size on the level of degradation. The smaller test specimens had dimensions of 40 × 40 × 160 mm, and the larger ones had dimensions of 100 × 100 × 400 mm. Both sizes of test specimens were always made of the same mortar. In one case, Blast Furnace Cement was chosen as the binder. In the other case, it was an alkali-activated material as a possibly more environmentally economical substitute. Both types of material were deposited in three degrading solutions: magnesium sulphate, ammonium nitrate and acetic acid. The reference set was stored in a water bath. After six months in the degradation solutions, a static elastic modulus was determined for the specimens during this test, and the acoustic emission was measured. Acoustic emission parameters were evaluated: the number of hits, the amplitude magnitude and a slope from the amplitude magnitude versus time (this slope should correspond to the Kaiser effect). For most of the parameters studied, the size effect was more evident for the more degraded specimens, i.e., those placed in aggressive solutions. The approximate location of emerging defects was also determined using linear localisation for smaller specimens where the degradation effect was more significant. In more aggressive environments (acetic acid, ammonium nitrate), the higher resistance of materials based on alkaline-activated slag was more evident, even in the case of larger test bodies. The experiments show that the acoustic emission results agree with the results of the static modulus of elasticity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179766PMC
http://dx.doi.org/10.3390/ma16093527DOI Listing

Publication Analysis

Top Keywords

acoustic emission
16
emission parameters
8
sizes test
8
test specimens
8
ammonium nitrate
8
acetic acid
8
amplitude magnitude
8
test
5
specimens
5
specimen size
4

Similar Publications

The shear resistance of filling joints is an important factor affecting the stability of rock joints. Pressure-shear tests of cement-filled joints were carried out. Combined with the acoustic emission (AE) technique, the effects of normal stress, roughness and filling degree on the shear strength, damage morphology and damage evolution of cement-filled joints were investigated.

View Article and Find Full Text PDF

Since traffic flow has not been generated, a traffic noise prediction model based on actual traffic state data cannot be directly applied to the planned road network. Therefore, a regional traffic noise prediction method is proposed to find the upper limit of network noise emission based on design elements. The model is developed with noise predictions of the basic road section, interrupted/continuous intersections, and regional network.

View Article and Find Full Text PDF

Synchronized acoustic emission and high-speed imaging of cavitation-induced atomization: The role of shock waves.

Ultrason Sonochem

January 2025

School of Engineering Computing and Mathematics, Oxford Brookes University, Oxford, UK; Department of Materials, University of Oxford, Oxford, UK.

This study experimentally investigates the role of cavitation-induced shock waves in initiating and destabilizing capillary (surface) waves on a droplet surface, preceding atomization. Acoustic emissions and interfacial wave dynamics were simultaneously monitored in droplets of different liquids (water, isopropyl alcohol and glycerol), using a calibrated fiber-optic hydrophone and high-speed imaging. Spectral analysis of the hydrophone data revealed distinct subharmonic frequency peaks in the acoustic spectrum correlated with the wavelength of capillary waves, which were optically captured during the onset of atomization from the repetitive imploding bubbles.

View Article and Find Full Text PDF

With the increasing height and rotor diameter of wind turbines, bat activity monitoring within the risk area becomes more challenging. This study investigates the impact of Unmanned Aerial Systems (UAS) on bat activity and explores acoustic bat detection via UAS as a new data collection method in the vicinity of wind turbines. We tested two types of UAS, a multicopter and a Lighter Than Air (LTA) UAS, to understand how they may affect acoustically recorded and analyzed bat activity level for three echolocation groups: Pipistrelloid, Myotini, and Nyctaloid.

View Article and Find Full Text PDF

Introduction: Eradication of residual biofilm from root canal dentine is critical for the success of regenerative endodontic procedures (REPs).

The Aim Of The Study: To evaluate the influence of ultrasonically activated irrigants in concentrations used for REPs for removal of dual-species biofilm from three-dimensionally printed tooth models with attached dentine samples.

Methodology: Seventy-two three-dimensionally printed teeth models were fabricated with a standardized slot in the apical third of the root to ensure a precise fit with a human root dentine specimen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!