A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of Early Concrete Damage Caused by Chloride-Induced Steel Corrosion Using a Deep Learning Approach Based on RNN for Ultrasonic Pulse Waves. | LitMetric

The objective of this study is to explore the feasibility of using ultrasonic pulse wave measurements as an early detection method for corrosion-induced concrete damages. A series of experiments are conducted using concrete cube specimens, at a size of 200 mm, with a reinforcing steel bar (rebar) embedded in the center. The main variables include the water-to-cement ratio of the concrete (0.4, 0.5, and 0.6), the diameter of the rebar (10 mm, 13 mm, 19 mm, and 22 mm), and the corrosion level (ranging from 0% to 20% depending on rebar diameter). The impressed current technique is used to accelerate corrosion of rebars in concrete immersed in a 3% NaCl solution. Ultrasonic pulse waves are collected from the concrete specimens using a pair of 50 kHz P-wave transducers in the through-transmission configuration before and after the accelerated corrosion test. Deep learning techniques, specifically three recurrent neural network (RNN) models (long short-term memory, gated recurrent unit, and bidirectional long short-term memory), are utilized to develop a classification model for early detection of concrete damage due to rebar corrosion. The performance of the RNN models is compared to conventional ultrasonic testing parameters, namely ultrasonic pulse velocity and signal consistency. The results demonstrate that the RNN method outperforms the other two methods. Among the RNN methods, the bidirectional long short-term memory RNN model had the best performance, achieving an accuracy of 74% and a Cohen's kappa coefficient of 0.48. This study establishes the potentiality of utilizing deep learning of ultrasonic pulse waves with RNN models for early detection of concrete damage associated with steel corrosion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180178PMC
http://dx.doi.org/10.3390/ma16093502DOI Listing

Publication Analysis

Top Keywords

ultrasonic pulse
20
concrete damage
12
deep learning
12
pulse waves
12
early detection
12
rnn models
12
long short-term
12
short-term memory
12
concrete
8
steel corrosion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!