In order to develop multifunctional quaternary ammonium salts and explore their advantages as modifiers for wastewater treatment, castor oil-based quaternary ammonium salts were synthesised and subsequently used as modifiers for attapulgite treatment. The structures of untreated and treated attapulgite were compared by Fourier transform infrared spectra and X-ray diffraction. The mechanism of modification was speculated. Various factors such as the amount of modified attapulgite, temperature and pH were also investigated in the batch experiments on the removal rates of acetone and phenol from wastewaters. The synthesis conditions were set as follows: the reaction temperature was 80 °C, the reaction time was 8 h, the molar ratio of castor oil to N,N-dimethyl-1,3-propanediamine was 1:5, the catalyst was 6% NaOH and the product yield was about 64.72%. The grafting rate of the castor oil-based quaternary ammonium salt was about 99.6% when the amount of modifier was 0.69 g per 5 g of attapulgite, the ultrasound treatment time was 11 min and the pH was 5. The quaternary ammonium salt was only associated with the surface of attapulgite and did not change the rod-like crystal structure of the silicate. The modified attapulgite is much more fibrous and exhibits a good distribution of crystal bundles. The removal rates were found to be less favourable under strongly acidic and strongly alkaline conditions. Under suitable conditions, for 50 mL industrial wastewaters (phenol: 100-160 mg/L; acetone: 680-800 mg/L), the amount of modified attapulgite was 1 g, the temperature was 80 °C and the pH was 7, and the maximum removal rates of acetone and phenol after 80 min reached about 65.71% and 78.72%, respectively, which were higher than those of ATP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180249 | PMC |
http://dx.doi.org/10.3390/ma16093468 | DOI Listing |
Sci Rep
January 2025
Department of Pediatric Dentistry, Faculty of Dentistry, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.
Assessing parental aesthetic acceptability of Silver Diamine Fluoride (SDF) staining is crucial for its potential implementation in paediatric dentistry in different regions. This study aimed to compare aesthetic perceptions and acceptance of SDF staining between Spanish and Italian parents, and assess weather acceptability is influenced by location, child's cooperation, or demographic background. A cross-sectional comparative study was conducted among Spanish and Italian parents at three university dental clinics, using a validated Italian version of the questionnaire "Parental perceptions of Silver Diamine Fluoride Dental Color Changes".
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Uncontrollable bleeding poses a significant risk of death and cost in wars, vehicle accidents, and first aid. Hence, in order to seal uncontrollable bleeding and promote wound healing, the Fe-driven chitosan quaternary ammonium salt self-gelling powder (QPF) was prepared using 5%QCS/AA/Fe with the 52.72 % ± 0.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Int J Biol Macromol
January 2025
School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China. Electronic address:
Cinnamaldehyde (CIN) is gaining interest as a highly effective natural antimicrobial agent to extend the shelf life of fruits. However, its inherent instability limits further applications. In this work, a new strategy for the synthesis of HKUST-1 to encapsulate CINs by in situ growth method using copper-ammonia fiber as precursors is proposed.
View Article and Find Full Text PDFJADA Found Sci
October 2024
Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR.
The longevity of direct esthetic restorations is severely compromised because of, among other things, a loss of function that comes from their susceptibility to biofilm-mediated secondary caries, with being the most prevalent associated pathogen. Strategies to combat biofilms range from dental compounds that can disrupt multispecies biofilms in the oral cavity to approaches that specifically target caries-causing bacteria such as . One strategy is to include those antibacterial compounds directly in the material so they can be available long-term in the oral cavity and localized at the margin of the restorations, in which many of the failures initiate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!