AI Article Synopsis

  • A new composite of platinum and common transition metals was created on graphene nanoplatelets to study the relationship between synthesis methods and their electrochemical properties.
  • The materials were tested as bifunctional electrocatalysts for oxygen evolution and reduction, vital for applications in fuel cells and batteries.
  • Among the materials, sqPtFe/GNPs demonstrated the best performance in catalysis, while a unique two-stage synthesis approach enhanced effectiveness by improving reactant accessibility and minimizing charge transfer resistance.

Article Abstract

A set of platinum (Pt) and earth-abundant transition metals (M = Ni, Fe, Cu) on graphene nanoplatelets (sqPtM/GNPs) was synthesised via sequential deposition to establish parallels between the synthesis method and the materials' electrochemical properties. sqPtM/GNPs were assessed as bifunctional electrocatalysts for oxygen evolution (OER) and reduction (ORR) reactions for application in unitised regenerative fuel cells and metal-air batteries. sqPtFe/GNPs showed the highest catalytic performance with a low potential difference of ORR half-wave potential and overpotential at 10 mA cm during OER, a crucial parameter for bifunctional electrocatalysts benchmarking. A novel two-stage synthesis strategy led to higher electrocatalytic performance by facilitating the reactants' access to the active sites and reducing the charge-transfer resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179827PMC
http://dx.doi.org/10.3390/ma16093388DOI Listing

Publication Analysis

Top Keywords

sequential deposition
8
graphene nanoplatelets
8
bifunctional electrocatalysts
8
highly efficient
4
efficient oxygen
4
oxygen electrode
4
electrode sequential
4
deposition transition
4
transition metal-platinum
4
metal-platinum alloys
4

Similar Publications

Highly Permselective Contorted Polyamide Desalination Membranes with Enhanced Free Volume Fabricated by mLbL Assembly.

ACS Appl Mater Interfaces

January 2025

Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States.

The permeability-selectivity trade-off in polymeric desalination membranes limits the efficiency and increases the costs of reverse osmosis and nanofiltration systems. Ultrathin contorted polyamide films with enhanced free volume demonstrate an impressive 8-fold increase in water permeance while maintaining equivalent salt rejection compared to conventional polyamide membranes made with -phenylenediamine and trimesoyl chloride monomers. The solution-based molecular layer-by-layer (mLbL) deposition technique employed for membrane fabrication sequentially reacts a shape-persistent contorted diamine monomer with a trimesoyl chloride monomer, forming highly cross-linked, dense polyamide networks while avoiding the kinetic and mass transfer limitations of traditional interfacial polymerization.

View Article and Find Full Text PDF

As bacterial contamination crises escalate, the development of advanced membranes possessing both high flux and antibacterial properties is of paramount significance for enhancing water sterilization efficiency. Herein, an ultrathin layer of TbPa (an imine-linked covalent organic framework) and nanosized CuO clusters, sequentially deposited onto polyethersulfone membranes, demonstrate exceptional water flux performance, reaching a permeance level of 16000 LHM bar. The deposited TbPa, generating uniformly distributed reduction sites under illumination, facilitates the uniform formation of CuO clusters.

View Article and Find Full Text PDF

First report of strawberry root rot caused by in China.

Plant Dis

January 2025

Hebei Academy of Agricultural and Forestry Sciences, Plant Protection Institute, 437 Dongguan Street, Baoding, Hebei, China, 071000.

Strawberry () is an important economic crop in Hebei, China. In May 2023, root rot was observed in strawberry plantations (cultivar 'Benihoppe') in Shijiazhuang (37°57'23″N, 115°16'34″E), Hebei, China. The incidence of the disease reached up to 30% in the field.

View Article and Find Full Text PDF

Reducing iridium (Ir) loading while maintaining efficiency and stability is crucial for the acidic oxygen evolution reaction (OER). In this study, we develop a synthetic method of sequential electrochemical deposition and high-temperature thermal shock to produce an IrO/Ir-WO electrocatalyst with ∼1.75 nm IrO nanoparticles anchoring on Ir-doped WO nanosheets.

View Article and Find Full Text PDF

Liver fibrosis, a hallmark of chronic liver diseases, is characterized by excessive extracellular matrix (ECM) deposition and scar tissue formation. Current antifibrotic nanomedicines face significant limitations, including poor penetration into fibrotic tissue, rapid clearance, and suboptimal therapeutic efficacy. The dense fibrotic ECM acts as a major physiological barrier, necessitating the development of a targeted delivery strategy to achieve effective therapeutic outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!