β-1,4-glucanase can not only promote the wound healing of grafted seedlings but can also have a positive effect on a plant's cell wall construction. As a critical gene of β-1,4-glucanase, is involved in cell wall remodeling and intercellular adhesion and plays a vital role in grafting healing. However, the family members have not yet been characterized for melons. In this study, 18 were identified from the melon genome, and these were located on 15 chromosomes. Our phylogenetic analysis of these genes and genes from other species divided them into three clusters. The gene structure and conserved functional domains of in different populations differed significantly. However, responded to cis elements such as low temperature, exogenous hormones, drought, and injury induction. The expression profiles of were different. During the graft healing process of the melon scion grafted onto the squash rootstock, both exogenous naphthyl acetic acid (NAA) and far-red light treatment significantly induced the upregulated expression of related to the graft healing process. The results provided a technical possibility for managing the graft healing of melon grafted onto squash by regulating expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179234 | PMC |
http://dx.doi.org/10.3390/ijms24098258 | DOI Listing |
Front Immunol
January 2025
Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China.
An external trauma, illness, or other pathological cause can harm the structure and function of the spinal cord, resulting in a significant neurological disorder known as spinal cord injury (SCI). In addition to impairing movement and sensory functions, spinal cord injury (SCI) triggers complex pathophysiological responses, with the spatial dynamics of immune cells playing a key role. The inflammatory response and subsequent healing processes following SCI are profoundly influenced by the spatial distribution and movement of immune cells.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States.
Resolution of inflammation is essential for normal tissue healing and regeneration, with macrophages playing a key role in regulating this process through phenotypic changes from a pro-inflammatory to an anti-inflammatory state. Pharmacological and mechanical (mechanotherapy) techniques can be employed to polarize macrophages toward an anti-inflammatory phenotype, thereby diminishing inflammation. One clinically relevant pharmacological approach is the inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4).
View Article and Find Full Text PDFFront Aging Neurosci
January 2025
Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Introduction: Cerebral small vessel disease (CSVD) is a chronic systemic degenerative disease affecting small blood vessels in the brain, leading to cognitive impairments. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique that applies low electrical currents to the scalp, shows promise in treating cognitive and movement disorders. However, further clinical evaluation is required to assess the long-term effects of tDCS on neuroplasticity and gait in patients with CSVD.
View Article and Find Full Text PDFFront Pharmacol
January 2025
The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Background: Polydatin (3,4',5-trihydroxy-3-β-d-glucopyranoside, PD) is known for its antioxidant and anti-inflammatory properties. Oxaliplatin (OXA)-based chemotherapy is the first-line treatment for metastatic and recurrent colorectal cancer (CRC). However, the lack of selectivity for normal cells often results in side effects.
View Article and Find Full Text PDFMater Today Bio
February 2025
Research Center of Nanomedicine Technology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, PR China.
Nanozymes with specific catalytic activity inhibit inflammation and promote wound healing efficiently and safely. In this work, multifunctional manganese-based nanozymes (MnGA) with antioxidant properties were successfully constructed via a simple coordination reaction in which manganese chloride was used as the manganese source and gallic acid (GA) was used as the ligand solution. MnGA possesses both catalase-like (CAT-like) and superoxide dismutase-like (SOD-like) activities and a reactive nitrogen species (RNS) scavenging capacity, which enables it to efficiently inhibit the inflammatory response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!