Tea tree oil (TTO) is a volatile essential oil obtained by distillation, mainly from the Australian native plant (Maiden & Betche) Cheel (Myrtaceae). In this study, a comparative analysis of the chemical constituents of seven tea tree oils () and four other spp. oils (, (M), two chemotypes of , (M and M), and (M)) was carried out using gas chromatography-mass spectrometry (GC-MS) and high-performance thin-layer chromatography (HPTLC). Among the seven TTOs, terpinen-4-ol (37.66-44.28%), γ-terpinene (16.42-20.75%), α-terpinene (3.47-12.62%), α-terpineol (3.11-4.66%), and terpinolene (2.75-4.19%) were the most abundant compounds. On the other hand, the most abundant compounds of the other oils varied, such as 1,8-cineole (64.63%) in M oil, (E)-nerolidol (48.40%) and linalool (33.30%) in M oil, 1,8-cineole (52.20%) in M oil, and linalool (38.19%) and 1,8-cineole (27.57%) in M oil. HPTLC fingerprinting of oils enabled the discrimination of TTO oils from other spp. oils. Variation was observed in the profile of the R values among EOs. The present study shows that HPTLC is one of the best ways to identify and evaluate the quality control in authenticating TTOs, other EOs, or EOs from other species within the Myrtaceae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180325 | PMC |
http://dx.doi.org/10.3390/molecules28093925 | DOI Listing |
J Chromatogr B Analyt Technol Biomed Life Sci
January 2025
Universite Claude-Bernard Lyon 1, CNRS, CPE-Lyon, CP2M, UMR 5128, Villeurbanne, France. Electronic address:
Carboxylic acids and aromatic compounds are essential building blocks and starting materials for the production of a wide range of fine chemicals and materials. Their recovery from kraft black liquor, an industrial effluent from pulp and paper mills, is a promising way to produce alternative bio-based chemicals. Reliable methods are needed to identify and quantify the molecules of interest in complex mixtures such as black liquors.
View Article and Find Full Text PDFNanotechnology
January 2025
Department of Biotechnology, Kalasalingam Academy of Research and Education (Deemed to be University), Anand Nagar, School of Bio, Chemical & Process Enginneering, Krishnankoil, Krishnan Kovil, Tamil Nadu, 626126, INDIA.
Significant progress has been made in cancer therapy with protein-based nanocarriers targeted directly to surface receptors for drug delivery. The nanocarriers are a potentially effective solution for the potential drawbacks of traditional chemotherapy, such as lack of specificity, side effects, and development resistance. Peptides as nanocarriers have been designed based on their biocompatible, biodegradable, and versatile functions to deliver therapeutic agents into cancer cells, reduce systemic toxicity, and maximize therapy efficacy through utilizing targeted ligands such as antibodies, amino acids, vitamins, and other small molecules onto protein-based nanocarriers and thus ensuring that drugs selectively accumulate in the cancer cells instead of healthy organs/drug release at a target site without effects on normal cells, which inherently caused less systemic toxicity/off-target effect.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Lattice distortion and disorder in the chemical environment of magnetic atoms within high-entropy compounds present intriguing issues in the modulation of magnetic functional compounds. However, the complexity inherent in high-entropy disordered systems has resulted in a relative scarcity of comprehensive investigations exploring the magnetic functional mechanisms of these alloys. Herein, we investigate the magnetocaloric effect (MCE) of the high-entropy intermetallic compound GdTbDyHoErCo.
View Article and Find Full Text PDFEnviron Health Perspect
January 2025
Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada.
Background: Millions worldwide are exposed to elevated levels of arsenic that significantly increase their risk of developing atherosclerosis, a pathology primarily driven by immune cells. While the impact of arsenic on immune cell populations in atherosclerotic plaques has been broadly characterized, cellular heterogeneity is a substantial barrier to in-depth examinations of the cellular dynamics for varying immune cell populations.
Objectives: This study aimed to conduct single-cell multi-omics profiling of atherosclerotic plaques in apolipoprotein E knockout () mice to elucidate transcriptomic and epigenetic changes in immune cells induced by arsenic exposure.
Astrobiology
January 2025
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Meteoritic impacts on planetary surfaces deliver a significant amount of energy that can produce prebiotic organic compounds such as cyanides, which may be a key step to the formation of biomolecules. To study the chemical processes of impact-induced organic synthesis, we simulated the physicochemical processes of hypervelocity impacts (HVI) in experiments with both high-speed C projectiles and laser ablation. In the first approach, a C beam was accelerated to collide with ammonium nitrate (NHNO) to reproduce the shock process and plume generation of meteoritic impacts on nitrogen-rich planetary surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!