The main objective of this research was to develop novel compounds from readily accessed natural products especially eugenol with potential biological activity. Eugenol, the principal chemical constituent of clove () from the family Myrtaceae is renowned for its pharmacological properties, which include analgesic, antidiabetic, antioxidant, anticancer, and anti-inflammatory effects. According to reports, PPARγ regulates inflammatory reactions. The synthesized compounds were structurally analyzed using FT-IR, HNMR, CNMR, and mass spectroscopy techniques. Molecular docking was performed to analyze binding free energy and important amino acids involved in the interaction between synthesized derivatives and the target protein. The development of the structure-activity relationship is based on computational studies. Additionally, the stability of the best-docked protein-ligand complexes was assessed using molecular dynamic modeling. The in-vitro PPARγ competitive binding Lanthascreen TR-FRET assay was used to confirm the affinity of compounds to the target protein. All the synthesized derivatives were evaluated for an in vitro anti-inflammatory activity using an albumin denaturation assay and HRBC membrane stabilization at varying concentrations from 6.25 to 400 µM. In this background, with the aid of computational research, we were able to design six novel derivatives of eugenol synthesized, analyzed, and utilized TR-FRET competitive binding assay to screen them for their ability to bind PPARγ. Anti-inflammatory activity evaluation through in vitro albumin denaturation and HRBC method revealed that exhibits maximum inhibition of heat-induced albumin denaturation at 50% and 85% protection against HRBC lysis at 200 and 400 µM, respectively. Overall, we found novel derivatives of eugenol that could potentially reduce inflammation by PPARγ agonism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180488 | PMC |
http://dx.doi.org/10.3390/molecules28093899 | DOI Listing |
Fatigue cracking of rib-to-deck conventional single-sided welded joints is a prevalent issue in orthotropic steel decks (OSDs), significantly impacting their structural integrity and durability. Rib-to-deck innovative double-sided welded joints have the potential to enhance the fatigue resistance of OSD. However, Welding Residual Stresses (WRS) significantly influence the fatigue life of these joints, mandating its consideration in fatigue assessments.
View Article and Find Full Text PDFSci Rep
December 2024
Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.
The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical and Electronics Engineering, SR University, Warangal, Telangana, 506371, India.
Autonomous microgrids (ATMG), with green power sources, like solar and wind, require an efficient control scheme to secure frequency stability. The weather and locationally dependent behavior of the green power sources impact the system frequency imperfectly. This paper develops an intelligent, i.
View Article and Find Full Text PDFSci Rep
December 2024
Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, 422-8526, Shizuoka, Japan.
The cell painting assay is useful for understanding cellular phenotypic changes and drug effects. To identify other aspects of well-known chemicals, we screened 258 compounds with the cell painting assay and focused on a mitochondrial punctate phenotype seen with disulfiram. To elucidate the reason for this punctate phenotype, we looked for clues by examining staining steps and gene knockdown as well as examining protein solubility and comparing cell lines.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran.
The oxidation of 5-HMF to HMFCA is an important yet complex process, as it generates high-value chemical intermediates. Achieving this transformation efficiently requires the development of non-precious, highly active catalysts derived from renewable biomass sources. In this work, we introduce UoM-1 (UoM, University of Mazandaran), a novel cobalt-based metal-organic framework (Co-MOF) synthesized using a simple one-step ultrasonic irradiation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!