Size-Pore-Dependent Methanol Sequestration from Water-Methanol Mixtures by an Embedded Graphene Slit.

Molecules

Secció de Física Estadística i Interdisciplinària, Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.

Published: April 2023

The separation of liquid mixture components is relevant to many applications-ranging from water purification to biofuel production-and is a growing concern related to the UN Sustainable Development Goals (SDGs), such as "Clean water and Sanitation" and "Affordable and clean energy". One promising technique is using graphene slit-pores as filters, or sponges, because the confinement potentially affects the properties of the mixture components in different ways, favoring their separation. However, no systematic study has shown how the size of a pore changes the thermodynamics of the surrounding mixture. Here, we focus on water-methanol mixtures and explore, using Molecular Dynamics simulations, the effects of a graphene pore, with size ranging from 6.5 to 13 Å, for three compositions: pure water, 90%-10%, and 75%-25% water-methanol. We show that tuning the pore size can change the mixture pressure, density and composition in bulk due to the size-dependent methanol sequestration within the pore. Our results can help in optimizing the graphene pore size for filtering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179872PMC
http://dx.doi.org/10.3390/molecules28093697DOI Listing

Publication Analysis

Top Keywords

pore size
12
methanol sequestration
8
water-methanol mixtures
8
mixture components
8
graphene pore
8
pore
5
size-pore-dependent methanol
4
sequestration water-methanol
4
mixtures embedded
4
graphene
4

Similar Publications

This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.

View Article and Find Full Text PDF

Optimal CO intake in metastable water film in mesoporous materials.

Nat Commun

December 2024

Department of Civil and Environmental Engineering, and Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hong Kong, China.

The feasibility of carbon mineralization relies on the carbonation efficiency of CO-reactive minerals, which is largely governed by the water content and state within material mesopores. Yet, the pivotal role of confined water in regulating carbonation efficiency at the nanoscale is not well understood. Here, we show that the maximum CO intake occurs at an optimal relative humidity (RH) when capillary condensation initiates within the hydrophilic mesopores.

View Article and Find Full Text PDF

Accurate stacking engineering of MOF nanosheets as membranes for precise H sieving.

Nat Commun

December 2024

Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

Two-dimensional (2D) metal-organic framework (MOF) nanosheet membranes hold promise for exact molecular transfer due to their structural diversity and well-defined in-plane nanochannels. However, achieving precise regulation of stacking modes between neighboring nanosheets in membrane applications and understanding its influence on separation performance remains unrevealed and challenging. Here, we propose a strategy for accurately controlling the stacking modes of MOF nanosheets via linker polarity regulation.

View Article and Find Full Text PDF

Molecular Design of Positively Charged 3D Covalent-Organic Framework Membranes for Li/Mg Separation.

Small Methods

December 2024

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.

3D covalent-organic framework (3D COF) membranes have unique features such as smaller pore sizes and more interconnected networks compared with 2D COF counterparts. However, the complicated and unmanageable fabrication hinders their rapid development. Molecular simulation, which can efficiently explore the structure-performance relationship of membranes, holds great promise in accelerating the development of 3D COF membranes.

View Article and Find Full Text PDF

Design, characterisation, and clinical evaluation of a novel porous Ti-6Al-4V hemipelvic prosthesis based on Voronoi diagram.

Biomater Transl

September 2024

Orthopaedic Research Institute and Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.

Three-dimensional printed Ti-6Al-4V hemipelvic prosthesis has become a current popular method for pelvic defect reconstruction. This paper presents a novel biomimetic hemipelvic prosthesis design that utilises patient-specific anatomical data in conjunction with the Voronoi diagram algorithm. Unlike traditional design methods that rely on fixed, homogeneous unit cell, the Voronoi diagram enables to create imitation of trabecular structure (ITS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!