AI Article Synopsis

  • * The SVRIII Brain Connectome study aims to analyze neuroimaging from patients and healthy controls but has faced recruitment and logistical challenges, especially during the COVID-19 pandemic.
  • * Solutions included adding more study sites, improving coordination among researchers, and implementing new strategies for recruiting healthy controls while also overcoming technical issues with neuroimage collection.

Article Abstract

Patients with hypoplastic left heart syndrome who have been palliated with the Fontan procedure are at risk for adverse neurodevelopmental outcomes, lower quality of life, and reduced employability. We describe the methods (including quality assurance and quality control protocols) and challenges of a multi-center observational ancillary study, SVRIII (Single Ventricle Reconstruction Trial) Brain Connectome. Our original goal was to obtain advanced neuroimaging (Diffusion Tensor Imaging and Resting-BOLD) in 140 SVR III participants and 100 healthy controls for brain connectome analyses. Linear regression and mediation statistical methods will be used to analyze associations of brain connectome measures with neurocognitive measures and clinical risk factors. Initial recruitment challenges occurred that were related to difficulties with: (1) coordinating brain MRI for participants already undergoing extensive testing in the parent study, and (2) recruiting healthy control subjects. The COVID-19 pandemic negatively affected enrollment late in the study. Enrollment challenges were addressed by: (1) adding additional study sites, (2) increasing the frequency of meetings with site coordinators, and (3) developing additional healthy control recruitment strategies, including using research registries and advertising the study to community-based groups. Technical challenges that emerged early in the study were related to the acquisition, harmonization, and transfer of neuroimages. These hurdles were successfully overcome with protocol modifications and frequent site visits that involved human and synthetic phantoms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178603PMC
http://dx.doi.org/10.3390/diagnostics13091604DOI Listing

Publication Analysis

Top Keywords

brain connectome
16
single ventricle
8
ventricle reconstruction
8
neurodevelopmental outcomes
8
technical challenges
8
healthy control
8
study
7
brain
5
challenges
5
reconstruction iii
4

Similar Publications

The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions.

View Article and Find Full Text PDF

The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.

View Article and Find Full Text PDF

Postpartum depression (PPD) profoundly impacts the mental and physical health of women globally and is an incurable psychological disorder. Traditional pharmacological treatments often have strong side effects and may adversely affect infant health through breastfeeding, underscoring the critical need for natural and gentle treatment strategies. Sugemule-7, a traditional Chinese medicine comprising multiple natural plant ingredients, represents a potentially safer and more effective alternative.

View Article and Find Full Text PDF

Analysis of resting state fMRI (rs-fMRI) typically excludes images substantially degraded by subject motion. However, data quality, including degree of motion, relates to a broad set of participant characteristics, particularly in pediatric neuroimaging. Consequently, when planning quality control (QC) procedures researchers must balance data quality concerns against the possibility of biasing results by eliminating data.

View Article and Find Full Text PDF

Individualized brain radiomics-based network tracks distinct subtypes and abnormal patterns in prodromal Parkinson's disease.

Neuroimage

January 2025

Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China. Electronic address:

Individuals in the prodromal phase of Parkinson's disease (PD) exhibit significant heterogeneity and can be divided into distinct subtypes based on clinical symptoms, pathological mechanisms, and brain network patterns. However, little has been done regarding the valid subtyping of prodromal PD, which hinders the early diagnosis of PD. Therefore, we aimed to identify the subtypes of prodromal PD using the brain radiomics-based network and examine the unique patterns linked to the clinical presentations of each subtype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!