Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Research into the early impacts of Alzheimer's disease (AD) on synapse function is one of the most promising approaches to finding a treatment. In this context, we have recently demonstrated that the Abeta42 peptide, which builds up in the brain during the processing of the amyloid precursor protein (APP), targets the ryanodine receptors (RyRs) of mouse hippocampal neurons and potentiates calcium (Ca) release from the endoplasmic reticulum (ER). The uncontrolled increase in intracellular calcium concentration ([Ca]), leading to the development of Ca dysregulation events and related excitable and synaptic dysfunctions, is a consolidated hallmark of AD onset and possibly other neurodegenerative diseases. Since RyRs contribute to increasing [Ca] and are thought to be a promising target for AD treatment, the goal of this review is to summarize the current level of knowledge regarding the involvement of RyRs in governing neuronal function both in physiological conditions and during the onset of AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177020 | PMC |
http://dx.doi.org/10.3390/cells12091236 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!