Emerging infectious diseases of wildlife have markedly increased in the last few decades. Unsustainable, continuous, and rapid alterations within and between coupled human and natural systems have significantly disrupted wildlife disease dynamics. Direct and indirect anthropogenic effects, such as climate change, pollution, encroachment, urbanization, travel, and trade, can promote outbreaks of infectious diseases in wildlife. We constructed a coupled human and natural systems framework identifying three main wildlife disease risk factors behind these anthropogenic effects: (i) immune suppression, (ii) viral spillover, and (iii) disease propagation. Through complex and convoluted dynamics, each of the anthropogenic effects and activities listed in our framework can lead, to some extent, to one or more of the identified risk factors accelerating disease outbreaks in wildlife. In this review, we present a novel framework to study anthropogenic effects within coupled human and natural systems that facilitate the emergence of infectious disease involving wildlife. We demonstrate the utility of the framework by applying it to Fibropapillomatosis disease of marine turtles. We aim to articulate the intricate and complex nature of anthropogenically exacerbated wildlife infectious diseases as multifactorial. This paper supports the adoption of a One Health approach and invites the integration of multiple disciplines for the achievement of effective and long-lasting conservation and the mitigation of wildlife emerging diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177368PMC
http://dx.doi.org/10.3390/ani13091441DOI Listing

Publication Analysis

Top Keywords

coupled human
16
human natural
16
natural systems
16
anthropogenic effects
16
infectious diseases
12
systems framework
8
emerging infectious
8
marine turtles
8
wildlife
8
diseases wildlife
8

Similar Publications

We propose a novel approach to investigate the brain mechanisms that support coordination of behavior between individuals. Brain states in single individuals defined by the patterns of functional connectivity between brain regions are used to create joint symbolic representations of brain states in two or more individuals to investigate symbolic dynamics that are related to interactive behaviors. We apply this approach to electroencephalographic data from pairs of subjects engaged in two different modes of finger-tapping coordination tasks (synchronization and syncopation) under different interaction conditions (uncoupled, leader-follower, and mutual) to explore the neural mechanisms of multi-person motor coordination.

View Article and Find Full Text PDF

This study assessed the feasibility of miR17 ~ 92-based antiresorptive strategy by determining the effects of conditional transgenic (cTG) overexpression of miR17 ~ 92 in myeloid cells on bone and osteoclasts. Osteoclasts of male and female cTG mutant mice each showed 3- to fivefold overexpression of miR17 ~ 92 cluster genes compared to those of age- and sex-matched wildtype (WT) littermates. Male but not female cTG mutant mice had more trabecular and cortical bones as well as lower bone resorption reflected by reduction in osteoclast number and resorbing surface.

View Article and Find Full Text PDF

Background: Specialized pro-resolving mediators (SPMs) promote inflammatory resolution and homeostasis and are thought to have specific reprogramming effects on hman microglia. Decreased SPM levels have been correlated with chronic neuroinflammation, late-stage Alzheimer's disease (AD) and neuropathology in humans, yet few studies have explored the cellular signatures of resolution. Amyloid is though to bind one target resolution receptor, ChemR23, leading to internalization.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) incidence is almost double in female than male, suggesting sex-specific AD risk genes remain unknown.

Method: We designed a statistical physics approach that exploits freely available but massive evolutionary and phylogenetic coupling data on sequence variation and speciation. These couplings lead to quantifiable values for the selection pressure exerted on the genes within a population.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.

Background: A better understanding of the molecular process that drive Alzheimer's disease(AD) are required to develop effective biomarkers and therapies. This includes determining how essential elements like Fe, Cu and Zn are involved in the disease. In the literature there is debate over the role of iron in AD and there are reports of increased, decreased and unchanged levels of Fe in AD brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!