Burrata is a fresh pasta filata cheese manufactured in Italy. Its demand on the worldwide market is constantly growing, and prolonging its shelf-life is an important challenge for the Italian dairy industry. In the present study, combining a commercial bio-protective starter and modified atmosphere packaging (MAP) was evaluated as a strategy to delay the spoilage of product quality. Three experimental samples of burrata were produced by experimental trials at the industrial level and stored for 28 days under refrigerated conditions. Two samples contained the protective starter but were packaged differently (under MAP and immersed in water), and one did not contain the starter and was packaged under MAP. A sample of burrata without a starter and immersed in water was also prepared and used as a control. The combination of MAP and bio-protective starter delayed the degradation of lactose and citric acid, used as indices of microbial activity. In fact, lower counts of and were observed in this sample. In contrast, control burrata had the highest level of total Volatile Organic Compounds (VOC) at the end of the storage period, because of higher microbial activity. Even though all samples were judged to be unacceptable after 28 days from the sensory point of view, the sample with bio-protective starter under MAP had the best score after 21 days, obtaining a shelf-life extension of about 7 days with respect to control. In conclusion, the combination of MAP and protective starter culture could be an easy way to extend the shelf-life of burrata stored under correct refrigerated conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178730 | PMC |
http://dx.doi.org/10.3390/foods12091867 | DOI Listing |
Nano Lett
January 2025
University Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.
Thermal transport in nanostructures plays a critical role in modern technologies. As devices shrink, techniques that can measure thermal properties at nanometer and nanosecond scales are increasingly needed to capture transient, out-of-equilibrium phenomena. We present a novel pump-probe photon-electron method within a scanning transmission electron microscope (STEM) to map temperature dynamics with unprecedented spatial and temporal resolutions.
View Article and Find Full Text PDFNarra J
December 2024
Departement of Nursing, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Falls among cognitively impaired older adults are a global concern. The aim of this study was to assess the efficacy of combining physical exercise and cognitive training to improve balance among older adults. A systematic search of databases, including Embase, Medline-OVID, CINAHL-EBSCOhost, and Central-Cochrane Library, was conducted from March 9 to April 6, 2023.
View Article and Find Full Text PDFSci Rep
January 2025
College of Intelligence and Computing, Tianjin University, Tianjin, 300000, China.
Falling is an emergency situation that can result in serious injury or even death, especially in the absence of immediate assistance. Therefore, developing a model that can accurately and promptly detect falls is crucial for enhancing quality of life and safety. In the field of object detection, while YOLOv8 has recently made notable strides in detection accuracy and speed, it still faces challenges in detecting falls due to variations in lighting, occlusions, and complex human postures.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe 76131, Germany.
Atomically precise clusters such as [Pt(CO)(PPh)] ( = 1,2) (PPh is triphenylphosphine) are known as precursors for making oxidation catalysts. However, the changes occurring to the cluster upon thermal activation during the formation of the active catalyst are poorly understood. We have used a combination of hybrid mass spectrometry and surface science to map the thermal decomposition of [Pt(CO)(PPh)](NO).
View Article and Find Full Text PDFSci Robot
January 2025
Department of Bioengineering, Imperial College of London, London, UK.
Despite the advances in bionic reconstruction of missing limbs, the control of robotic limbs is still limited and, in most cases, not felt to be as natural by users. In this study, we introduce a control approach that combines robotic design based on postural synergies and neural decoding of synergistic behavior of spinal motoneurons. We developed a soft prosthetic hand with two degrees of actuation that realizes postures in a two-dimensional linear manifold generated by two postural synergies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!