Developing new and versatile platinum(IV) complexes that incorporate bioactive moieties is a rapidly evolving research strategy for cancer drug discovery. In this study, six platinum(IV) complexes (-) that are mono-substituted in the axial position with a non-steroidal anti-inflammatory molecule, naproxen or acemetacin, were synthesised. A combination of spectroscopic and spectrometric techniques confirmed the composition and homogeneity of -. The antitumour potential of the resultant complexes was assessed on multiple cell lines and proved to be significantly improved compared with cisplatin, oxaliplatin and carboplatin. The platinum(IV) derivatives conjugated with acemetacin ( and ) were determined to be the most biologically potent, demonstrating GI values ranging between 0.22 and 250 nM. Remarkably, in the Du145 prostate cell line, elicited a GI value of 0.22 nM, which is 5450-fold more potent than cisplatin. A progressive decrease in reactive oxygen species and mitochondrial activity was observed for - in the HT29 colon cell line, up to 72 h. The inhibition of the cyclooxygenase-2 enzyme was also demonstrated by the complexes, confirming that these platinum(IV) complexes may reduce COX-2-dependent inflammation and cancer cell resistance to chemotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177380 | PMC |
http://dx.doi.org/10.3390/cancers15092460 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, Babeş-Bolyai University, Str. Arany Janos Nr. 11, RO-400028 Cluj-Napoca, Romania.
The synthesis and characterization of novel platinum(II) and platinum(IV) complexes derived from unsymmetrical ethylene or propylenediamine derivatives are presented. IR spectroscopy and ESI mass spectrometry techniques were employed to characterize the complexes, revealing distinctive absorption bands and isotope patterns. Furthermore, the complexes were characterized by H and C NMR spectroscopy.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Over 90% of cancer patients succumb to metastasis, yet conventional frontline therapy struggles to halt the progression of metastatic tumors. Targeted radionuclide therapy, which delivers radiation precisely to tumor sites, shows promise for treating metastasis. The rational design of a prodrug activation platform using radionuclides would be an ideal approach to synergize chemotherapy with targeted radionuclide therapy, yet it has not been established.
View Article and Find Full Text PDFInorg Chem
December 2024
Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain.
Dicationic, -symmetrical, tris-chelate Pt(IV) complexes of general formula [Pt(trz)(N∧N)](OTf), bearing two cyclometalated 4-butyl-3-methyl-1-phenyl-1-1,2,3-triazol-5-ylidene (trz) ligands and one aromatic diimine [N∧N = 2,2'-bipyridine (bpy, ), 4,4'-di--butyl-2,2'-bipyridine (dbbpy, ), 4,4'-dimethoxi-2,2'-bipyridine (dMeO-bpy, ), 1,10-phenanthroline (phen, ), 4,7-diphenyl-1,10-phenanthroline (bphen, ), dipyrido[3,2-:2',3'-]phenazine (dppz, ), or 2,3-diphenylpyrazino[2,3-][1,10]phenanthroline (dpprzphen, )] are obtained through chloride abstraction from [PtCl(trz)] () using AgOTf in the presence of the corresponding diimine. Complexes show long-lived phosphorescence from LC excited states involving the diimine ligand, with quantum yields that reach 0.18 in solution and 0.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, 741246, India.
Transition metal complex-loaded nanosystems (TMCNs) represent a cutting-edge platform for stimuli (light, ultrasound)-responsive cancer therapies. These nanosystems, incorporating metals such as manganese(II), zinc(II), ruthenium(II), rhenium(I), iridium(III), and platinum(IV), significantly enhance the efficacy of light-activated therapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), as well as ultrasound-activated treatments like sonodynamic therapy (SDT). TMCNs based on ruthenium(II), rhenium(I), and iridium(III) improve PDT, while manganese(II) and iridium(III) demonstrate exceptional sonosensitizing properties.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, Brandon University, 270 18th Street, Brandon, Manitoba R7A 6A9, Canada.
Aerobic oxidation of a dimethylplatinum(II) complex featuring 1,1-di(2-pyridyl)ethanol as a supporting ligand leads to the formation of two unexpected Pt complexes (in ∼1:1 ratio), neither of which results from direct oxidation typical for Pt centers supported by popular κ-(,) ligands. While one product features an isomerized Pt center stabilized by the κ-(,,) ligand coordination mode, surprisingly, the other product results from intramolecular activation of the ligand methyl fragment. Mechanistic studies, reactivity of model complexes, and DFT calculations reveal that the critical proton-responsive nature of the ligand allows formation of intermediates that result in a concerted metalation deprotonation (CMD)-like C-H activation at Pt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!