Background: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, with shorter five-year survival than other breast cancer subtypes, and lacks targeted and hormonal treatment strategies. The signal transducer and activator of transcription 3 (STAT3) signaling is up-regulated in various tumors, including TNBC, and plays a vital role in regulating the expression of multiple proliferation- and apoptosis-related genes.
Results: By combining the unique structures of the natural compounds STA-21 and Aulosirazole with antitumor activities, we synthesized a class of novel isoxazoloquinone derivatives and showed that one of these compounds, ZSW, binds to the SH2 domain of STAT3, leading to decreased STAT3 expression and activation in TNBC cells. Furthermore, ZSW promotes STAT3 ubiquitination, inhibits the proliferation of TNBC cells in vitro, and attenuates tumor growth with manageable toxicities in vivo. ZSW also decreases the mammosphere formation of breast cancer stem cells (BCSCs) by inhibiting STAT3.
Conclusions: We conclude that the novel isoxazoloquinone ZSW may be developed as a cancer therapeutic because it targets STAT3, thereby inhibiting the stemness of cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177496 | PMC |
http://dx.doi.org/10.3390/cancers15092424 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!