Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A smart artificial intelligent system (SAIS) for Acinetobacter density (AD) enumeration in waterbodies represents an invaluable strategy for avoidance of repetitive, laborious, and time-consuming routines associated with its determination. This study aimed to predict AD in waterbodies using machine learning (ML). AD and physicochemical variables (PVs) data from three rivers monitored via standard protocols in a year-long study were fitted to 18 ML algorithms. The models' performance was assayed using regression metrics. The average pH, EC, TDS, salinity, temperature, TSS, TBS, DO, BOD, and AD was 7.76 ± 0.02, 218.66 ± 4.76 µS/cm, 110.53 ± 2.36 mg/L, 0.10 ± 0.00 PSU, 17.29 ± 0.21 °C, 80.17 ± 5.09 mg/L, 87.51 ± 5.41 NTU, 8.82 ± 0.04 mg/L, 4.00 ± 0.10 mg/L, and 3.19 ± 0.03 log CFU/100 mL respectively. While the contributions of PVs differed in values, AD predicted value by XGB [3.1792 (1.1040-4.5828)] and Cubist [3.1736 (1.1012-4.5300)] outshined other algorithms. Also, XGB (MSE = 0.0059, RMSE = 0.0770; R = 0.9912; MAD = 0.0440) and Cubist (MSE = 0.0117, RMSE = 0.1081, R = 0.9827; MAD = 0.0437) ranked first and second respectively, in predicting AD. Temperature was the most important feature in predicting AD and ranked first by 10/18 ML-algorithms accounting for 43.00-83.30% mean dropout RMSE loss after 1000 permutations. The two models' partial dependence and residual diagnostics sensitivity revealed their efficient AD prognosticating accuracies in waterbodies. In conclusion, a fully developed XGB/Cubist/XGB-Cubist ensemble/web SAIS app for AD monitoring in waterbodies could be deployed to shorten turnaround time in deciding microbiological quality of waterbodies for irrigation and other purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177717 | PMC |
http://dx.doi.org/10.1038/s41598-023-34963-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!