This paper presents the numerical simulation and fabrication of a metasurface composed of silver nanorings with a split-ring gap. These nanostructures can exhibit optically-induced magnetic responses with unique possibilities to control absorption at optical frequencies. The absorption coefficient of the silver nanoring was optimized by performing a parametric study with Finite Difference Time Domain (FDTD) simulations. The absorption and scattering cross sections of the nanostructures are numerically calculated to assess the impact of the inner and outer radii, the thickness and the split-ring gap of one nanoring, as well as the periodicity factor for a group of four nanorings. This showed full control on resonance peaks and absorption enhancement in the near infrared spectral range. The experimental fabrication of this metasurface made of an array of silver nanorings is achieved by e-beam lithography and metallization. Optical characterizations are then carried out and compared to the numerical simulations. In contrast to usual microwave split-ring resonator metasurfaces reported in literature, the present study shows both the realization by a top-down process and modelling performed in the infrared frequency range.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182000PMC
http://dx.doi.org/10.1038/s41598-023-34579-wDOI Listing

Publication Analysis

Top Keywords

silver nanorings
12
top-down process
8
fabrication metasurface
8
split-ring gap
8
design infrared
4
infrared optical
4
optical absorber
4
silver
4
absorber silver
4
nanorings
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!