Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of this property remain challenging yet critical to evaluating the electrolyte performance and tailoring electrolyte recipes with targeted properties. We proposed a screened overlapping method to efficiently compute the viscosity of lithium battery electrolytes by molecular dynamics simulations. The origin of electrolyte viscosity was further comprehensively probed. The viscosity of solvents exhibits a positive correlation with the binding energy between molecules, indicating viscosity is directly correlated to intermolecular interactions. Salts in electrolytes enlarge the viscosity significantly with increasing concentrations while diluents serve as the viscosity reducer, which is attributed to the varied binding strength from cation-anion and cation-solvent associations. This work develops an accurate and efficient method for computing the electrolyte viscosity and affords deep insight into viscosity at the molecular level, which exhibits the huge potential to accelerate advanced electrolyte design for next-generation rechargeable batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202305331 | DOI Listing |
Sci Rep
January 2025
Department of Food Engineering and Technology, Tezpur University, Tezpur, India.
This study explores the impact of natural deep eutectic solvents (NADES) on the structure and functionality of treebean (Parkia timoriana) seed protein, a novel approach to enhancing protein stability and functionality for sustainable bioprocessing. The research aims to evaluate the dynamic interactions between protein and choline chloride-sugar-based NADES, focusing on their effects on thermal properties, emulsification behaviour, and rheological characteristics. NADES were formulated using different sugars, and protein-NADES dispersions were analysed for their physicochemical and functional properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Instituto de Pesquisa Pelé Pequeno Príncipe, 80240-020 Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, 80230-020 Curitiba, PR, Brazil. Electronic address:
The mushroom Pleurotus ostreatus is widely produced in Brazil and its stipes are discarded before commercialization. In the present study, this agricultural fungal waste (mushroom stipes), was analyzed by preparing an aqueous extract and obtaining the polysaccharides by ethanol precipitation (POS-extract). The fraction presented 37 % of carbohydrates and small amounts of proteins and phenolic compounds.
View Article and Find Full Text PDFPlant Sci
January 2025
Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China. Electronic address:
Amino acids are crucial nutrients for growth in crops. In this study, we found an amino acid transporter-like 13 (OsATL13), that coordinately determined rice yield and quality. OsATL13 was primarily expressed in the root and panicle, its protein was localized on plasma membrane, and it principally transported phenylalanine and methionine.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China. Electronic address:
This work revealed the effects of endogenous proteins on the structural, physicochemical, and digestive properties of starch in corn before and after ripening and explored the binding mechanism of proteins with starch. The microstructure showed that the postharvest ripening process resulted in a thinning of the protein layer on the surface of starch particle. After the removal of protein, the uniformity of the sample surface increased, with tiny pores.
View Article and Find Full Text PDFLangmuir
January 2025
Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, PL 60-965 Poznan, Poland.
Despite extensive research on the use of salts to enhance micellar growth, numerous questions remain regarding the impact of ionic exchange and molecular structure on charge neutralization. This study looks into how certain cations (Na, Ca, and Mg) affect the structure of a cocamidopropyl betaine CAPB and sodium dodecylbenzenesulfonate SDBS surfactant mixture, aiming toward applications in targeted delivery systems. The mixture consists of a zwitterionic surfactant, cocamidopropyl betaine (CAPB), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), combined in varying molar ratios at a total concentration of 200 mM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!