High conductive and transparent hydrogels with adhesion function are ideal candidates for soft electronic devices. However, it remains a challenge to design appropriate conductive nanofillers to endow hydrogels with all these characteristics. The 2D MXene sheets are promising conductive nanofillers for hydrogels due to excellent electricity and water-dispersibility. However, MXene is quite susceptible to oxidation. In this study, polydopamine (PDA) was employed to protect the MXene from oxidation and meanwhile endow hydrogels with adhesion. However, PDA coated MXene (PDA@MXene) were easily flocculated from dispersion. 1D cellulose nanocrystals (CNCs) were employed as steric stabilizers to prevent the agglomeration of MXene during the self-polymerization of dopamine. The obtained PDA coated CNC-MXene (PCM) sheets display outstanding water-dispersible and anti-oxidation stability and are promising conductive nanofillers for hydrogels. During the fabrication of polyacrylamide hydrogels, the PCM sheets were partially degraded into PCM nanoflakes with smaller size, leading to transparent PCM-PAM hydrogels. The PCM-PAM hydrogels can self-adhere to skin, and possess high transmittance of 75 % at 660 nm, superior electric conductivity of 4.7 S/m with MXene content as low as 0.1 % and excellent sensitivity. This study will facilitate the development of MXene based stable, water-dispersible conductive nanofillers and multi-functional hydrogels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2023.120929 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Institute of Soft-matter and Advanced Functional Materials, Gansu Province Carbon New Material Industry Technology Center, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
Hexagonal boron nitride (h-BN), with excellent thermal conductivity and insulation capability, has garnered significant attention in the field of electronic thermal management. However, the thermal conductivity of the h-BN-enhanced polymer composite material is far from that expected because of the insurmountable interfacial thermal resistance. In order to realize the high thermal conductivity of polymer composite thermal interface materials, herein, an in situ exfoliation method has been employed to prepare a boron nitride nanosheet-graphene (BNNS-Gr) hybrid filler.
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, Istanbul, Maslak, 34469, Turkey.
A series of anionic poly(acrylamide--sodium acrylate)/poly(ethylene glycol), PAN/PEG, hybrids were conveniently synthesized free radical aqueous polymerization by integrating bentonite, kaolin, mica, graphene and silica, following a simple and eco-friendly crosslinking methodology. A comparative perspective was presented on how integrated nanofillers affect the physicochemical properties of hybrid gels depending on the differences in their structures. Among the five types of nanofillers, bentonite-integrated hybrid gel had the highest water absorbency, while graphene-integrated gel had the lowest.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Enikolopov Institute of Synthetic Polymer Materials Russian Academy of Sciences (ISPM RAS), Profsoyuznaya St. 70, 117393 Moscow, Russia.
The results of a comprehensive investigation into the structure and properties of nanodiamond soot (NDS), obtained from the detonation of various explosive precursors (trinitrotoluene, a trinitrotoluene/hexogen mixture, and tetryl), are presented. The colloidal behavior of the NDS particles in different liquid media was studied. The results of the scanning electron microscopy, dynamic light scattering, zeta potential measurements, and laser diffraction analysis suggested a similarity in the morphology of the NDS particle aggregates and agglomerates.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of New Energy Development and Energy Storage Technology of Handan, College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China.
Herein, a novel composite solid-state polymer electrolytes (CSEs) was regulated by introducing CoNi-MOF (Metal-organic framework) @NiPc (Nickel phthalocyanine) nanofiller (CMN) into PEO (polyethylene oxide) matrix. In this novel system, the NiPc uniformly wrapped around the surface of MOF through hydrogen bond bridging, avoiding the agglomeration of the MOF particles. The chemisorption between Ni in NiPc and the O atoms in the bis(triffuoromethanesulfonyl)imide anion (TFSI) restricted the mobility of the anions within the CSEs, which improved the release of Li ions from the NiPcLi.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh.
High dielectric constants with less dielectric loss composites is highly demandable for technological advancements across various fields, including energy storage, sensing, and telecommunications. Their significance lies in their ability to enhance the performance and efficiency of a wide range of devices and systems. In this work, the dielectric performance of graphene oxide (GO) reinforced plasticized starch (PS) nanocomposites (PS/GO) for different concentrations of GO nanofiller was studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!