A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dissolved black carbon as a potential driver of surface water heating dynamics in wildfire-impacted regions: A case study from Pyramid Lake, NV, USA. | LitMetric

Black carbon (BC), pyrogenic residues resulting from the incomplete combustion of organics, are liberated from wildfires at high rates. Subsequent introduction to aqueous environments via atmospheric deposition or overland flow results in the formation of a dissolved fraction, called dissolved black carbon (DBC). As wildfire frequency and intensity increases along with a changing climate, it becomes imperative to understand the impact a concurrent increase in DBC load might have to aquatic ecosystems. In the atmosphere BC stimulates warming by absorbing solar radiation, and similar processes may occur with surface waters that contain DBC. In this work we investigated whether the addition of environmentally relevant levels of DBC could impact surface water heating dynamics in experimental settings. DBC was quantified at multiple locations and depths in Pyramid Lake (NV, USA) during peak fire season while two large, proximal wildfires burned. DBC was detected in Pyramid Lake water at all sampled locations at concentrations (3.6-18 ppb) significantly higher than those reported for other large inland lakes. DBC was positively correlated (R = 0.84) with chromophoric dissolved organic matter (CDOM) but not bulk dissolved or total organic carbon (DOC, TOC), suggesting that DBC is a significant component of the optically active organics in the lake. Subsequent lab-based experiments were conducted by adding environmentally relevant levels of DBC standards to pure water, exposing the system to solar spectrum radiation, and creating a numerical model of heat transfer based on observed temperatures. The addition of DBC at environmentally relevant orders of magnitude caused reductions to shortwave albedo when exposed to the solar spectrum, which resulted in 5-8 % more incident radiation being absorbed by water and changes to water heating dynamics. In environmental settings, this increase in energy absorption could translate to increased heating of the epilimnion in Pyramid Lake and other wildfire-impacted surface waters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.164141DOI Listing

Publication Analysis

Top Keywords

pyramid lake
16
black carbon
12
water heating
12
heating dynamics
12
environmentally relevant
12
dbc
10
dissolved black
8
surface water
8
lake usa
8
surface waters
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!