MitoQuicLy: A high-throughput method for quantifying cell-free DNA from human plasma, serum, and saliva.

Mitochondrion

Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA. Electronic address:

Published: July 2023

Circulating cell-free mitochondrial DNA (cf-mtDNA) is an emerging biomarker of psychobiological stress and disease which predicts mortality and is associated with various disease states. To evaluate the contribution of cf-mtDNA to health and disease states, standardized high-throughput procedures are needed to quantify cf-mtDNA in relevant biofluids. Here, we describe MitoQuicLy: Mitochondrial DNA Quantification in cell-free samples by Lysis. We demonstrate high agreement between MitoQuicLy and the commonly used column-based method, although MitoQuicLy is faster, cheaper, and requires a smaller input sample volume. Using 10 µL of input volume with MitoQuicLy, we quantify cf-mtDNA levels from three commonly used plasma tube types, two serum tube types, and saliva. We detect, as expected, significant inter-individual differences in cf-mtDNA across different biofluids. However, cf-mtDNA levels between concurrently collected plasma, serum, and saliva from the same individual differ on average by up to two orders of magnitude and are poorly correlated with one another, pointing to different cf-mtDNA biology or regulation between commonly used biofluids in clinical and research settings. Moreover, in a small sample of healthy women and men (n = 34), we show that blood and saliva cf-mtDNAs correlate with clinical biomarkers differently depending on the sample used. The biological divergences revealed between biofluids, together with the lysis-based, cost-effective, and scalable MitoQuicLy protocol for biofluid cf-mtDNA quantification, provide a foundation to examine the biological origin and significance of cf-mtDNA to human health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10524316PMC
http://dx.doi.org/10.1016/j.mito.2023.05.001DOI Listing

Publication Analysis

Top Keywords

cf-mtdna
9
plasma serum
8
serum saliva
8
mitochondrial dna
8
disease states
8
quantify cf-mtdna
8
cf-mtdna levels
8
tube types
8
mitoquicly
6
mitoquicly high-throughput
4

Similar Publications

Cell-free DNA release following psychosocial and physical stress in women and men.

Transl Psychiatry

January 2025

Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany.

Cell-free DNA (cfDNA) is continuously shed by all cells in the body, but the regulation of this process and its physiological functions are still largely unknown. Previous research has demonstrated that both nuclear (cf-nDNA) and mitochondrial (cf-mtDNA) cfDNA levels increase in plasma in response to acute psychosocial and physical stress in males. This study further investigated these findings by testing 31 female participants (16 using oral hormonal contraception and 15 not using oral hormonal contraception), and the results were subsequently compared with those of 16 male participants.

View Article and Find Full Text PDF

Intercellular mitochondria transfer is an evolutionarily conserved process in which one cell delivers some of their mitochondria to another cell in the absence of cell division. This process has diverse functions depending on the cell types involved and physiological or disease context. Although mitochondria transfer was first shown to provide metabolic support to acceptor cells, recent studies have revealed diverse functions of mitochondria transfer, including, but not limited to, the maintenance of mitochondria quality of the donor cell and the regulation of tissue homeostasis and remodelling.

View Article and Find Full Text PDF

Probing the diagnostic values of plasma cf-nDNA and cf-mtDNA for Parkinson's disease and multiple system atrophy.

Front Neurosci

December 2024

Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.

Background: Cell loss and mitochondrial dysfunction are key pathological features of idiopathic Parkinson's disease (PD) and multiple system atrophy (MSA). It remains unclear whether disease-specific changes in plasma circulating cell-free nuclear DNA (cf-nDNA) and mitochondrial DNA (cf-mtDNA) occur in patients with PD and MSA. In this study, we investigated whether plasma cf-nDNA, cf-mtDNA levels, as well as cf-mtDNA integrity, are altered in patients with PD and MSA.

View Article and Find Full Text PDF

Absolute Quantification of Cellular and Cell-Free Mitochondrial DNA Copy Number from Human Blood and Urinary Samples Using Real Time Quantitative PCR.

Methods Mol Biol

November 2024

Diabetes and Obesity Theme, School of Cardiovascular Medicine and Metabolic Sciences, Faculty of Life Sciences and Medicine , King's College London, London, UK.

Mitochondrial DNA copy number (mtDNA-CN) in human body fluids is widely used as a biomarker of mitochondrial dysfunction in common metabolic diseases. Here we describe protocols to measure cellular and/or cell free (cf)-mtDNA-CN in human peripheral blood and urine. Cellular mtDNA is located inside the mitochondria where it encodes key subunits of the respiratory complexes in mitochondria and is usually normalized with reference to the nuclear genome as the mitochondrial genome to nuclear genome ratio (Mt/N) in either whole blood, peripheral blood mononuclear cells (PBMCs), or whole urine.

View Article and Find Full Text PDF

Background: Pregnancy outcomes are influenced by maternal distress but the pathways underlying these effects are still unknown. Mitochondria, crucial for stress adaptation and energy production, may link psychosocial stress to its biological effects, especially during pregnancy when energy demands significantly increase. This study explores two mitochondrial markers-circulating cell-free mitochondrial DNA (cf-mtDNA) and Growth Differentiation Factor-15 (GDF15)-as potential mitochondrial health indicators linking maternal distress to pregnancy outcomes in two longitudinal studies from the USA and Turkey.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!