Freestanding electrodes with high energy density and cycle stability have attracted attention on the development of lithium-sulfur (Li-S) batteries. However, both severe shuttle effect and sluggish conversion kinetics hinder their practical applications. Herein, we employed the electrospinning and subsequent nitridation processes to prepare a necklace-like structure of CuCoN nanoparticles anchored on N-doped carbon nanofibers (CuCoN/NC) as freestanding sulfur host for Li-S batteries. Such bimetallic nitride boosts chemical adsorption and catalytic activity throughout detailed theoretical calculation and experimental electrochemical characterization. The three-dimensional conductive necklace-like framework could provide abundant cavities for realizing high sulfur utilization and alleviating the volume variation, as well as fast lithium-ions diffusion and electron transfer. The Li-S cell with the S@CuCoN/NC cathode delivers a stable cycling performance with a capacity attenuation rate of 0.076% per cycle after 150cycles at 2.0C and an exceptional capacity retention of 657 mAh g even at a high sulfur loading of 6.8 mg cm over 100cycles. The facile and scalable method can help promote the widespread application of fabrics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.04.183 | DOI Listing |
Chem Commun (Camb)
January 2025
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
In this study, a distinctive multiple core-shell structure of Co nanoparticles inserted into N-doped carbon dodecahedron@Co hydroxide (Co/NCD@Co(OH)) was synthesized a spontaneous redox reaction between metallic Co and NO, ultimately materializing the fine dispersion and exposure of the active sites. The electronic interaction existing between the Co/NCD core and the Co(OH) shell brings a synergistic effect, conspicuously lessens the overpotential, and reinforces the yield-rate and faradaic efficiency of NH for electrochemical nitrate-ammonia conversion. This study underlines the spontaneous redox between the catalysts and substrate, rendering it as a synthetic strategy for designing genuine and well-dispersed active sites.
View Article and Find Full Text PDFSci Rep
January 2025
Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, Zhejiang, China.
Electrocatalytic materials with dual functions of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have received increasing attention in the field of zinc-air batteries (ZABs) research. In this study, bifunctional CoNC@NCXS catalysts were prepared by anchoring Co and N co-doped CoNC on N-doped carbon xerogel sphere (NCXS) based on the spatially confined domain effect and in-situ doping technique. CoNC@NCXS exhibited excellent ORR/OER activity in alkaline electrolytes with the ORR onset potential of 0.
View Article and Find Full Text PDFLangmuir
January 2025
Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India.
Due to the high cost of the available Pt electrocatalysts, the large-scale water electrolysis production of hydrogen has been hindered. Hydrogen generation via electrochemical water splitting is a renewable energy essential to a sustainable society, creating a distinct material interface that shows Pt-like properties with long-term stability crucial to hydrogen evolution reactions (HERs). Here, we synthesized the guanine-assisted facile synthesis of 1 wt % Pt/MoC/C having a layered type morphology via solid state calcined process followed by chemical reduction.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely professional University, Phagwara, Punjab, India. Electronic address:
Gallic acid (GA) has emerged as a low biodegradable and high acidity industrial effluent. Due to mutagenic and carcinogenic nature of GA, it becomes essential to remove it from wastewater. Different chemical, physical and biological methods are being used for this purpose.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, Shanxi, PR China. Electronic address:
In this study, carbon dots doped with silver and nitrogen (Ag,N-CDs) were synthesized and their application in chemiluminescence (CL) was investigated using the potassium ferricyanide/hydrogen peroxide (KFe(CN)/HO) reaction. Theoretical calculations reveal that Ag doping facilitates a lower excitation energy. The experimental conditions influencing the CL reaction were examined and optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!