Mānuka honey is a valuable commodity produced by bees foraging the flowers of Leptospermum scoparium, a bush native to New Zealand and Australia. Due to its high value and proven health benefits, authenticity fraud in the sale of this food is a significant risk, as recounted in the literature. Four compulsory natural products must be present at minimum concentrations to authenticate mānuka honey (3-phenyllactic acid, 2'-methoxyacetophenone, 2-methoxybenzoic acid, and 4-hydroxyphenyllactic acid). However, spiking other kinds of honey with these compounds and/or the dilution of mānuka honey with other varieties may result in fraud going undetected. In this work, liquid chromatography coupled with high-resolution mass spectrometry and a metabolomics-based strategy has allowed us to tentatively identify 19 natural products -putative mānuka honey markers-, nine of which are reported for the first time. Chemometric models applied to these markers allowed the detection of both spiking and dilution fraud attempts of mānuka honey, even at 75% mānuka honey purity. Thus, the herein-reported methodology can be employed in the prevention and detection of mānuka honey adulteration even at low levels, and the tentatively identified markers presented in this work proved valuable for mānuka honey authentication procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.124647 | DOI Listing |
Food Sci Nutr
January 2025
Department of Postharvest, Supply Chain, Commerce and Sensory Science, Institute of Food Science and Technology Hungarian University of Agriculture and Life Sciences Budapest Hungary.
The volatile profile of bee pollen samples from Central and Eastern Europe was investigated by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Sampling conditions were optimized for the extraction of volatiles. Pollen odorants were extracted with six different fiber coatings, five various extraction times, three diverse extraction temperatures and three differing desorption times.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Laboratory Technology Program Artvin Vocational School, Artvin Çoruh University Artvin Türkiye.
Honey is a natural product gathered by honeybees from the pollen and nectar of various plants and flowers. The homeland of the Caucasian honey bee, which draws attention with its honey production and is one of the most productive bee races known in the world, is Northeastern Anatolia in Türkiye. This study aims to determine and correlate the phenolic content and antioxidant activity of 54 honey samples obtained from the most important gene centers of the Caucasian bee in Türkiye.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Dairy Science and Food Technology, Institute of Agricultural Sciences Banaras Hindu University Varanasi India.
Mushrooms are considered as nutraceutical foods that can effectively prevent diseases such as cancer and other serious life-threatening conditions include neurodegeneration, hypertension, diabetes, and hypercholesterolemia. The , also known as the "Golden chanterelle" or "Golden girolle," is a significant wild edible ectomycorrhizal mushroom. It is renowned for its delicious, apricot-like aroma and is highly valued in various culinary traditions worldwide.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
Recently, it has been shown that sugar‑conditioned honey bees can be biased towards a nectarless dioecious crop as kiwifruit. The challenges for an efficient pollination service in this crop species are its nectarless flowers and its short blooming period. It is known that combined non-sugar compounds (NSCs) present in the floral products of different plants, such as caffeine and arginine, enhance olfactory memory retention in honey bees.
View Article and Find Full Text PDFBMC Biol
January 2025
Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.
Background: Deformed wing virus (DWV) is a major honey bee pathogen that is actively transmitted by the parasitic mite Varroa destructor and plays a primary role in Apis mellifera winter colony losses. Despite intense investigation on this pollinator, which has a unique environmental and economic importance, the mechanisms underlying the molecular interactions between DWV and honey bees are still poorly understood. Here, we report on a group of honey bee proteins, identified by mass spectrometry, that specifically co-immunoprecipitate with DWV virus particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!