AI Article Synopsis

  • Chronic exposure to aflatoxin B1 (AFB1) in mice significantly worsens stress vulnerability, as seen through various behavioral tests, when combined with chronic mild stress (CMS).
  • Morphological changes in microglia were observed, including an increase in pyroptosis markers in the hippocampus of AFB1-treated mice, indicating inflammation and cell death.
  • Additionally, AFB1 exposure led to decreased neurogenesis in the hippocampus, with fewer proliferating neural stem cells, further exacerbated by the presence of chronic mild stress.

Article Abstract

Background: Chronic aflatoxin B1 (AFB1) exposure may increase the risk of multiple neuropsychiatric disorders. Stress is considered one of the main contributors to major depressive disorder. Whether and how chronic AFB1 exposure affects vulnerability to stress is unclear.

Methods: Mice were exposed for three weeks to AFB1 (100 µg/kg/d) and/or chronic mild stress (CMS). The vulnerability behaviors in response to stress were assessed in the forced swimming test (FST), sucrose preference test (SPT), and tail suspension test (TST). Microglial pyroptosis was investigated using immunofluorescence, enzyme-linked immunosorbent assays, and western blot assay in the hippocampus of mice. Hippocampal neurogenesis and the effects of AFB1-treated microglia on proliferation and differentiation of neural stem/precursor cells (NSPCs) were assessed via immunofluorescence in the hippocampus of mice.

Results: Mice exposed to CMS in the presence of AFB1 exhibited markedly greater vulnerability to stress than mice treated with CMS or AFB1 alone, as indicated by reduced sucrose preference and longer immobility time in the forced swimming test. Chronic aflatoxin B1 exposure resulted in changes in the microglial morphology and increase in TUNEL microglia and GSDMD microglia in the hippocampal dentate gyrus. When mice were exposed to both CMS and AFB1, pyroptosis-related molecules (such as NLRP3, caspase-1, GSDMD-N, and interleukin-1β) were significantly upregulated in the hippocampus. These molecules were also significantly enhanced by AFB1 in primary microglial cultures. AFB1-treated mice showed decrease in the numbers of BrdU, BrdU-DCX, and BrdU-NeuN cells in the hippocampal dentate gyrus, as well as the percentages of BrdU cells that were NeuN in the presence or absence of CMS when compared with vehicle-treated mice. The combination of AFB1 and CMS exacerbated these effects to an even greater extent. The number of DCX cells correlated negatively with the percentage of ameboid microglia, TUNEL microglia and GSDMD microglia in the hippocampal dentate gyrus. AFB1-treated microglia suppressed the proliferation and neuronal differentiation of NSPCs in vitro.

Conclusion: Chronic AFB1 exposure induces microglial pyroptosis, promoting an adverse neurogenic microenvironment that impairs hippocampal neurogenesis, which may render mice more vulnerable to stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2023.114991DOI Listing

Publication Analysis

Top Keywords

microglial pyroptosis
12
vulnerability stress
12
afb1 exposure
12
mice exposed
12
hippocampal dentate
12
dentate gyrus
12
mice
9
afb1
9
stress mice
8
chronic aflatoxin
8

Similar Publications

Buyang Huanwu Decoction prevents hemorrhagic transformation after delayed t-PA infusion via inhibiting NLRP3 inflammasome/pyroptosis associated with microglial PGC-1α.

J Ethnopharmacol

December 2024

Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China. Electronic address:

Ethnopharmacological Relevance: Delayed tissue-type plasminogen activator (t-PA) thrombolysis, which has a restrictive therapeutic time window within 4.5 h following ischemic stroke (IS), increases the risk of hemorrhagic transformation (HT) and subsequent neurotoxicity. Studies have shown that the NLRP3 inflammasome activation reversely regulated by the PGC-1α leads to microglial polarization and pyroptosis to cause damage to nerve cells and the blood-brain barrier.

View Article and Find Full Text PDF

Olfactory bulb microglia activation mediates neuronal pyroptosis in ozone-exposed mice with olfactory and cognitive dysfunction.

J Hazard Mater

December 2024

Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China. Electronic address:

In recent years, there has been a notable increase in the concentration of air pollutants in the troposphere, especially ozone. However, limited research has gone beyond examining histopathological alterations in the olfactory bulb (OB) to explore the effects of ozone exposure on olfactory and cognitive functions. In our study, we exposed nine-month-old C57BL/6 mice to ozone at a concentration of 1.

View Article and Find Full Text PDF

This study aims to investigate the effect of essential oil of Acori Tatarinowii Rhizoma on microglial pyroptosis and decipher the underlying mechanism. BV-2 cells were treated with 1 μg·mL~(-1) lipopolysaccharide(LPS) and 10 μmol·L~(-1) nigericin sodium salt for the modeling of pyroptosis. The cells were treated with different doses of essential oil of Acori Tatarinowii Rhizoma, and then the cell viability and apoptosis were examined by the CCK-8 assay and flow cytometry, respectively.

View Article and Find Full Text PDF

Hydroxychloroquine (HCQ), a well-known antimalarial and anti-inflammatory drug, has demonstrated potential neuroprotective effects in ischemic stroke by inhibiting pyroptosis, a programmed cell death associated with inflammation. This study investigates the impact of HCQ on ischemic stroke pathology using both in vivo and in vitro models. In vivo, C57BL/6 mice subjected to middle cerebral artery occlusion (MCAO) were treated with HCQ.

View Article and Find Full Text PDF

Status epilepticus (SE) links to high mortality and morbidity. Considering the neuroprotective property of baicalein (BA), we investigated its effects on post-SE neuronal injury via the NLRP3/GSDMD pathway. Mice were subjected to SE modeling and BA interference, with seizure severity and learning and memory abilities evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!