Background: Naloxone has been used as an opioid antagonist to prevent multiple adverse side effects of opioid-like tolerance and hyperalgesia. This study has investigated naloxone combined with morphine to limit pain hypersensitivity. In addition, the expression of brain-derived neurotrophic factor (BDNF) and K Cl cotransporter2 (KCC2) were also studied.
Methods: Forty-eight adult male Wistar rats (180-220 g) were divided into eight groups, with six rats in each group. Rats were divided into two tolerance and hyperalgesia groups; the sham group, the morphine group, the treatment group (naloxone along with morphine), and the sham group (naloxone along with saline) for eight consecutive days. Tail-flick test was performed on days 1, 5, and 8, and the plantar test on days 1 and 10. On days 8 and 10, the lumbar segments of the spinal cord were collected, and BDNF and KCC2 expression were analyzed using western blotting and immunohistochemistry, respectively.
Results: Results showed that tolerance and hyperalgesia developed following eight days of repeated morphine injection. BDNF expression significantly increased, but KCC2 was downregulated. Co-administration of naloxone and morphine decreased tolerance and hyperalgesia by decreasing BDNF and increasing KCC2 expression, respectively.
Conclusion: This study suggests that BDNF and KCC2 may be candidate molecules for decreased morphine tolerance and hyperalgesia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.npep.2023.102345 | DOI Listing |
Alcohol
December 2024
Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA. Electronic address:
Introduction: Chronic alcohol exposure in humans and rodents causes tolerance to the analgesic effects of alcohol, and enhances pain sensitivity during alcohol withdrawal (i.e., hyperalgesia).
View Article and Find Full Text PDFNeuropharmacology
March 2025
Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN, USA. Electronic address:
Cannabinoid CB agonists show promise as analgesics because they lack unwanted side effects associated with direct activation of CB receptors. CB receptor activation suppresses pathological pain in animal models, but the types of pain that best respond to CB agonists are incompletely understood. This gap in knowledge may contribute to failures in clinical translation.
View Article and Find Full Text PDFActa Anaesthesiol Scand
January 2025
Department of Anaesthesiology, Herlev and Gentofte Hospital, Herlev, Denmark.
Eur J Pharmacol
January 2025
Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain.
People with chronic pain mitigate their suffering by the action of opioids. Adverse reactions aside, opioids are not exempt from potential complications like addiction and abuse, which have posed a global public health problem lately. Finding new therapeutic strategies to improve analgesia and to reduce opioid side effects has become a priority.
View Article and Find Full Text PDFEur J Neurosci
December 2024
Laboratorio de Fisiología Celular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico.
Pain is a morbidity or comorbidity with a high incidence that significantly impacts the well-being of patients. In this study, we evaluated the effects of systemic administration of tramadol, a weak mu-opioid receptor (MOR) agonist, plus quinpirole (a D2-like receptor agonist). The study was performed in naïve rats and in rats with induced inflammatory and neuropathic pain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!