Rapid characterization of the potential active metabolites of diacerein in rat plasma based on UHPLC-Q-exactive orbitrap mass spectrometry and molecular docking.

J Pharm Biomed Anal

School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China. Electronic address:

Published: September 2023

Diacerein, a competently semisynthetic diacetyl derivative of anthraquinone, is a nonsteroidal anti-inflammatory drug, which has been used for treating osteoarthritis and preventing vascular diseases. However, previous investigation indicated that diacerein metabolites and its metabolic pathway in vivo was still unclear. In this research, an effective method was established based on ultra-high-performance liquid chromatography coupled with Q-Exactive-Orbitrap mass spectrometer and molecular docking to screen and detect the potential active metabolites of diacerein in rat plasma after oral administration. The data acquisition and processing methods including Full MS-ddMS combined with parallel reaction monitoring mode, extracted ion chromatogram and diagnostic fragment ions were adopted to detect and identify more infinitesimal and unknown diacerein metabolites in vivo. As a result, a total of 32 metabolites were detected and identified in rat plasma according to retention times, accurate mass, diagnostic fragment ions, and relevant drug biotransformation knowledge, among 31 metabolites were firstly reported in this study. Then, the relevant reactions in vivo such as deacetylation, hydroxylation, methylation, sulfate conjugation, glucuronidation, and their composite reactions, were all detected. Ultimately, the results of molecular docking showed that the metabolites of diacerein might have good affinity with IL-1 receptor in vivo. Among them, the metabolites M21 and M1 have the strongest binding affinity with IL-1 receptors, and could be considered as potential active metabolites of diacerein, which have an efficient effect on exerting pharmacological effects of diacerein in vivo. In conclusion, the study of diacerein metabolites in rat plasma expanded our understanding about the metabolism of diacerein in vivo and provided the significant foundation for further drug efficacy studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2023.115447DOI Listing

Publication Analysis

Top Keywords

metabolites diacerein
16
rat plasma
16
potential active
12
active metabolites
12
molecular docking
12
diacerein metabolites
12
metabolites
10
diacerein
10
diacerein rat
8
diagnostic fragment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!