A rigorous account of quantum nonlocal effects is paramount for understanding the optical response of metal nanostructures and for designing plasmonic devices at the nanoscale. Here, we present a scheme for retrieving the quantum surface response of metals, encapsulated in the Feibelman -parameters, from electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) measurements. We theoretically demonstrate that quantum nonlocal effects have a dramatic impact on EELS and CL spectra, in the guise of spectral shifts and nonlocal damping, when either the system size or the inverse wave vector in extended structures approaches the nanometer scale. Our concept capitalizes on the unparalleled ability of free electrons to supply deeply subwavelength near-fields and, thus, probe the optical response of metals at length scales in which quantum-mechanical effects are apparent. These results pave the way for a widespread use of the -parameter formalism, thereby facilitating a rigorous yet practical inclusion of nonclassical effects in nanoplasmonics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c00298 | DOI Listing |
Phys Rev Lett
December 2024
Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA.
Recently, it was proposed that the chiral central charge of a gapped, two-dimensional quantum many-body system is proportional to a bulk ground state entanglement measure known as the modular commutator. While there is significant evidence to support this relation, we show in this Letter that it is not universal. We give examples of lattice systems that have vanishing chiral central charge, which nevertheless give nonzero "spurious" values for the modular commutator for arbitrarily large system sizes, in both one and two dimensions.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France.
Energy-filtered quantum states are promising candidates for efficiently simulating thermal states. We explore a protocol designed to transition a product state into an eigenstate located in the middle of the spectrum; this is achieved by gradually reducing its energy variance, which allows us to comprehensively understand the crossover phenomenon and the subsequent convergence toward thermal behavior. We introduce and discuss three energy-filtering regimes (short, medium, and long), and we interpret them as stages of thermalization.
View Article and Find Full Text PDFNat Commun
January 2025
Département de Physique Appliquée, Université de Genève, Genève, Switzerland.
Non-signalling conditions encode minimal requirements that any (quantum) systems must satisfy in order to be consistent with special relativity. Recent works have argued that in scenarios involving more than two parties, correlations compatible with relativistic causality do not have to satisfy all possible non-signalling conditions but only a subset of them. Here we show that correlations satisfying only this subset of constraints have to satisfy highly non-local monogamy relations between the effects of space-like separated random variables.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany.
We introduce protocols to prepare many-body quantum states with quantum circuits assisted by local operations and classical communication. We show that by lifting the requirement of exact preparation, one can substantially save resources. In particular, the so-called W and, more generally, Dicke states require a circuit depth and number of ancillas per site that are independent of the system size.
View Article and Find Full Text PDFNanophotonics
July 2024
POLIMA - Center for Polariton-Driven Light-Matter Interactions, University of Southern Denmark, DK-5230 Odense, Denmark.
Nonlocal and quantum mechanical phenomena in noble metal nanostructures become increasingly crucial when the relevant length scales in hybrid nanostructures reach the few-nanometer regime. In practice, such mesoscopic effects at metal-dielectric interfaces can be described using exemplary surface-response functions (SRFs) embodied by the Feibelman -parameters. Here we show that SRFs dramatically influence quantum electrodynamic phenomena - such as the Purcell enhancement and Lamb shift - for quantum light emitters close to a diverse range of noble metal nanostructures interfacing different homogeneous media.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!