AI Article Synopsis

  • The electrical conductivity of nanomaterial assemblies is influenced by how electrons move within and between the nano-objects, and phonons play a complex role in this dynamic.
  • Phonons can both reduce conductivity by scattering electrons and enhance it by aiding their movement through the potential-energy landscape.
  • Research shows that in single-wall carbon nanotubes, phonon-assisted electron transport is the main factor contributing to high conductivity at elevated temperatures, highlighting the potential for developing advanced electronic devices.

Article Abstract

The electrical conductivity of a macroscopic assembly of nanomaterials is determined through a complex interplay of electronic transport within and between constituent nano-objects. Phonons play dual roles in this situation: their increased populations tend to reduce the conductivity via electron scattering, while they can boost the conductivity by assisting electrons to propagate through the potential-energy landscape. We identified a phonon-assisted coherent electron transport process between neighboring nanotubes in temperature-dependent conductivity measurements on a macroscopic film of armchair single-wall carbon nanotubes. Through atomistic modeling of electronic states and calculations of both electronic and phonon-assisted junction conductances, we conclude that phonon-assisted conductance is the dominant mechanism for observed high-temperature transport in armchair carbon nanotubes. The unambiguous manifestation of coherent intertube dynamics proves a single-chirality armchair nanotube film to be a unique macroscopic solid-state ensemble of nano-objects promising for the development of room-temperature coherent electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.130.176303DOI Listing

Publication Analysis

Top Keywords

electronic transport
8
transport armchair
8
armchair carbon
8
nanotube film
8
carbon nanotubes
8
electronic
5
phonon-assisted
4
phonon-assisted intertube
4
intertube electronic
4
transport
4

Similar Publications

High-Performance and Anti-Freezing Moisture-Electric Generator Combining Ion-Exchange Membrane and Ionic Hydrogel.

Small

December 2024

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China.

Moisture-electric generators (MEGs), which convert moisture chemical potential energy into electrical power, are attracting increasing attention as clean energy harvesting and conversion technologies. However, existing devices suffer from inadequate moisture trapping, intermittent electric output, suboptimal performance at low relative humidity (RH), and limited ion separation efficiency. This study designs an ionic hydrogel MEG capable of continuously generating energy with enhanced selective ion transport and sustained ion-to-electron current conversion at low RH by integrating an ion-exchange membrane (IEM-MEG).

View Article and Find Full Text PDF

The work describes a novel sensing and transportation feasibility of the well-established antifungal drug Flucytosine (5-FC) using a 2D Silicon carbide (SiC) and Germanium-doped Silicon carbide (Ge@SiC) nanosheet via PBE level of Density functional theory. The computational study revealed that the drug molecules adhere to SiC and Ge@SiC sheets, maintaining their structural properties through physisorption on SiC and chemisorption on Ge@SiC. The charge transfer process associated with the adsorption is observed by Lowdin charge analysis and both the SiC and Ge@SiC sheets are identified as a feasible oxidation-based nanosensor for the drug.

View Article and Find Full Text PDF

The ability to rapidly charge batteries is crucial for widespread electrification across a number of key sectors, including transportation, grid storage, and portable electronics. Nevertheless, conventional Li-ion batteries with organic liquid electrolytes face significant technical challenges in achieving rapid charging rates without sacrificing electrochemical efficiency and safety. Solid-state batteries (SSBs) offer intrinsic stability and safety over their liquid counterparts, which can potentially bring exciting opportunities for fast charging applications.

View Article and Find Full Text PDF

Ketamine is an NMDA receptor antagonist commonly used as a dissociative anesthetic and analgesic. Though it is conventionally administered via the intravenous, intramuscular, or intranasal route, use as a compounded analgesic cream is becoming increasingly common. This is a case report of a 61-year-old man who was detained by the police for erratic driving.

View Article and Find Full Text PDF

Organic Iono-Optoelectronics: From Electrochromics to Artificial Retina.

Acc Chem Res

December 2024

Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.

ConspectusOrganic mixed ionic electronic conductors (OMIECs) represent an exciting and emerging class of materials that have recently revitalized the field of organic semiconductors. OMIECs are particularly attractive because they allow both ionic and electronic transport while retaining the inherent benefits of organic semiconducting materials such as mechanical conformability and biocompatibility. These combined properties make the OMIECs ideal for applications in bioelectronics, energy storage, neuromorphic computing, and electrochemical transistors for sensing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!