AI Article Synopsis

  • Rapidly rotating Rayleigh-Bénard convection is crucial for understanding various geophysical flows, particularly in heat transport.
  • Wall modes, which form along vertical surfaces during experiments, disrupt heat flux measurements and complicate the study of convection.
  • Adding narrow horizontal fins to these walls effectively reduces the impact of wall modes, allowing for more accurate studies of heat transport in rotating convection related to geophysical conditions.

Article Abstract

The heat transport by rapidly rotating Rayleigh-Bénard convection is of fundamental importance to many geophysical flows. Laboratory measurements are impeded by robust wall modes that develop along vertical walls, significantly perturbing the heat flux. We show that narrow horizontal fins along the vertical walls efficiently suppress wall modes ensuring that their contribution to the global heat flux is negligible compared with bulk convection in the geostrophic regime, thereby paving the way for new experimental studies of geophysically relevant regimes of rotating convection.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.130.174002DOI Listing

Publication Analysis

Top Keywords

wall modes
12
rapidly rotating
8
rotating rayleigh-bénard
8
rayleigh-bénard convection
8
narrow horizontal
8
horizontal fins
8
vertical walls
8
heat flux
8
suppression wall
4
modes rapidly
4

Similar Publications

This study explores the potential of using underutilized materials from agricultural and forestry systems, such as rice husk, wheat straw, and wood strands, in developing corrugated core sandwich panels as a structural building material. By leveraging the unique properties of these biobased materials within a corrugated geometry, the research presents a novel approach to enhancing the structural performance of such underutilized biobased materials. These biobased materials were used in different lengths to consider the manufacturing feasibility of corrugated panels and the effect of fiber length on their structural performance.

View Article and Find Full Text PDF

Understanding ferroelectric domain wall dynamics at the nanoscale across a broad range of timescales requires measuring domain wall position under different applied electric fields. The success of piezoresponse force microscopy (PFM) as a tool to apply local electric fields at different positions and imaging their changing position, together with the information obtained from associated switching spectroscopies has fueled numerous studies of the dynamics of ferroelectric domains to determine the impact of intrinsic parameters such as crystalline order, defects and pinning centers, as well as boundary conditions such as environment. However, the investigation of sub-coercive reversible domain wall vibrational modes requires the development of new tools that enable visualizing domain wall motion under varying applied fields with high temporal and spatial resolution while also accounting for spurious electrostatic effects.

View Article and Find Full Text PDF

Blood pressure (BP) is one of the vital physiological parameters, and its measurement is done routinely for almost all patients who visit hospitals. Cuffless BP measurement has been of great research interest over the last few years. In this paper, we aim to establish a method for cuffless measurement of BP using ultrasound.

View Article and Find Full Text PDF

Background: The healthcare sector faces a growing threat from the rise of highly resistant microorganisms, particularly Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa). Facing the challenge of antibiotic resistance, nanoparticles have surfaced as promising substitutes for antimicrobial therapy.

View Article and Find Full Text PDF

A preliminary study was conducted using electronic portal imaging device (EPID) based dose verification in pre-treatment and in vivo dose reconstruction modes for breast cancer intensity-modulated radiation therapy (IMRT) technique with known repositioning set-up errors. For 43 IMRT plans, the set-up errors were determined from 43 sets of EPID images and 258 sets of cone beam computed tomography images. In-house developed Edose software was used to reconstruct the dose distribution using the pre-treatment and on-treatment (in vivo) EPID acquired fluence maps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!